
z/OS Communications Server

IP Programmer’s Reference
Version 1 Release 4

SC31-8787-02

���

z/OS Communications Server

IP Programmer’s Reference
Version 1 Release 4

SC31-8787-02

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 405.

Third Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xiii

Tables . xv

About this document . xvii
Who should use this document. xvii
Typographic conventions used in this document xvii
Where to find more information xvii

Where to find related information on the Internet xviii
Licensed documents . xviii
Using LookAt to look up message explanations xix
How to contact IBM service xx
z/OS Communications Server information xx

Summary of changes . xxix

Chapter 1. General programming information 1
Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0 1

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 3
SNMP agents and subagents . 3
Processing DPI requests. 4

Processing a GET request . 4
Processing a SET request . 4
Processing a GET-NEXT request 4
Processing a REGISTER request 5
Processing a TRAP request 5
SNMP agent DPI header files 5

Compiling and linking . 5
Sample compile cataloged procedure additions 6
Sample link-edit cataloged procedure additions 6

SNMP DPI library routines . 6
mkDPIlist() . 6
fDPIparse() . 7
mkDPIregister() . 7
mkDPIresponse() . 8
mkDPIset() . 9
mkDPItrap() . 10
mkDPItrape() . 10
pDPIpacket() . 11
query_DPI_port() . 12

Sample SNMP DPI client program for C sockets for version 1.1 13
Using the DPISAMPL program 13
DPISAMPN NCCFLST for the SNMP manager 14
Compiling and linking the DPISAMPL.C source code 15
dpiSample table MIB descriptions 15
The DPISAMPL.C source code 16

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 35
SNMP agents and subagents 35

DPI agent requests . 36
SNMP DPI version 2.0 library 37

SNMP DPI version 2.0 API 37

© Copyright IBM Corp. 1989, 2002 iii

Compiling and linking . 38
From a UNIX System Services environment 38
From an MVS environment 38

DPI version 1.x base code considerations 39
SNMP DPI API version 1.1 considerations 39

Migrating your SNMP DPI subagent to version 2.0 39
Subagent programming concepts 41

Related information . 42
Specifying the SNMP DPI API 42

Connect processing . 42
OPEN request . 43
REGISTER request . 44
GET processing . 45
SET processing . 45
GETNEXT processing . 47
GETBULK processing request 48
TRAP request . 48
ARE_YOU_THERE request 48
UNREGISTER request . 48
CLOSE request . 49

Multithreading programming considerations 49
Functions, data structures, and constants 51
Basic DPI API functions . 52

The DPIdebug() function . 53
The DPI_PACKET_LEN() macro 54
The fDPIparse() function . 55
The fDPIset() function . 56
The mkDPIAreYouThere() function. 57
The mkDPIclose() function 58
The mkDPIopen() function. 59
The mkDPIregister() function 61
The mkDPIresponse() function 63
The mkDPIset() function . 65
The mkDPItrap() function . 67
The mkDPIunregister() function 69
The pDPIpacket() function . 70

Transport-related DPI API functions 71
The DPIawait_packet_from_agent() function 72
The DPIconnect_to_agent_TCP() function 74
The DPIconnect_to_agent_UNIXstream() function 76
The DPIdisconnect_from_agent() function 78
The DPIget_fd_for_handle() function 79
The DPIsend_packet_to_agent() function 80
The lookup_host() function 82

DPI structures . 83
The snmp_dpi_close_packet structure 84
The snmp_dpi_get_packet structure 85
The snmp_dpi_hdr structure 86
The snmp_dpi_next_packet structure. 88
The snmp_dpi_resp_packet structure. 89
The snmp_dpi_set_packet structure 90
The snmp_dpi_ureg_packet structure 92
The snmp_dpi_u64 structure 93

Character set selection . 94
Related information . 94

Constants, values, return codes, and include file 94

iv z/OS V1R4.0 CS: IP Programmer’s Reference

DPI CLOSE reason codes. 95
Related information . 95

DPI packet types . 95
Related information . 95

DPI RESPONSE error codes. 95
Related information . 96

DPI UNREGISTER reason codes 96
Related information . 96

DPI SNMP value types . 96
Related information . 97

Value representation . 97
Related information . 98

Value ranges and limits . 98
Return codes from DPI transport-related functions 98

Related information . 99
The snmp_dpi.h include file . 99

Parameters . 99
Description . 99
Related information . 99

A DPI subagent example . 100
Overview of subagent processing 100
Connecting to the agent . 102
Registering a subtree with the agent 105
Processing requests from the agent. 106
Processing a GET request . 109
Processing a GETNEXT request 112
Processing a SET/COMMIT/UNDO request 116
Processing an UNREGISTER request 119
Processing a CLOSE request 119
Generating a TRAP . 119

Chapter 4. Running the sample SNMP DPI client program for version 2.0 123
Using the sample program . 123
Compiling and linking the dpi_mvs_sample.c source code 123
DPISimple-MIB descriptions. 124

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 125
Introduction. 125
API outline . 126
Compiling and linking RAPI applications 126
Running RAPI applications . 126
Event upcall . 127

rapi_event_rtn_t - Event upcall 127
Client library services . 129

rapi_release - Remove a session. 130
rapi_reserve - Make, modify, or delete a reservation. 130
rapi_sender - Specify sender parameters 131
rapi_session - Create a session 133
rapi_version - RAPI version 134

RAPI formatting routines . 134
rapi_fmt_adspec - Format an adspec 134
rapi_fmt_filtspec - Format a filtspec 135
rapi_fmt_flowspec - Format a flowspec 135
rapi_fmt_tspec - Format a tspec 136

RAPI objects . 137
Flowspecs . 137

Contents v

Sender tspecs. 138
Adspecs . 138
Filter specs and sender templates 138

Asynchronous event handling 138
rapi_dispatch - Dispatch API event 140
rapi_getfd - Get file descriptor 140

Error handling . 141
Introduction. 141
RAPI error codes . 141
RSVP error codes . 142

Header files . 143
Integer and floating point types 143
The <rapi.h> header . 143
Integrated services data structures and macros 150

Chapter 6. X Window System interface in the z/OS CS environment . . . 159
X Window System and OSF/Motif 159

DLL support for the X Window System 160
How the X Window System interface works in the MVS environment . . . 160
Programming considerations 161
Running an X Window System or OSF/Motif DLL enabled application . . . 162
X Window System environment variables 162
EBCDIC/ASCII translation in the X Window System. 163
Standard clients supplied with MVS z/OS UNIX X Window System support 164
Demonstration programs supplied with MVS z/OS UNIX X Window System

support . 164
Where files are located . 165

Chapter 7. Remote procedure calls in the z/OS CS environment 167
The RPC interface . 167
Portmapper. 169

Contacting portmapper . 170
Target assistance . 170
RPCGEN Command . 171
enum clnt_.stat structure . 173

Porting . 173
Remapping file names with MANIFEST.H. 173
Accessing system return messages 174
Printing system return messages 174
Enumerations . 174
Header files for remote procedure calls 174

Compiling and linking RPC applications 174
Sample compile cataloged procedure additions 174
Nonreentrant modules . 175
Reentrant modules . 175

RPC global variables . 175
rpc_createerr . 176
svc_fds . 177
svc_fdset . 178
Remote procedure and external data representation calls 179
auth_destroy(). 180
authnone_create() . 181
authunix_create() . 182
authunix_create_default() . 183
callrpc() . 184
clnt_broadcast() . 186

vi z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_call() . 188
clnt_control() . 189
clnt_create() . 191
clnt_destroy() . 192
clnt_freeres() . 193
clnt_geterr() . 194
clnt_pcreateerror() . 195
clnt_perrno() . 196
clnt_perror() . 197
clnt_spcreateerror() . 198
clnt_sperrno() . 199
clnt_sperror() . 200
clntraw_create() . 201
clnttcp_create() . 202
clntudp_create() . 204
get_myaddress() . 206
getrpcport() . 207
pmap_getmaps() . 208
pmap_getport() . 209
pmap_rmtcall() . 210
pmap_set() . 212
pmap_unset() . 213
registerrpc() . 214
svc_destroy() . 215
svc_freeargs() . 216
svc_getargs() . 217
svc_getcaller(). 218
svc_getreq() . 219
svc_getreqset() . 220
svc_register() . 221
svc_run() . 222
svc_sendreply() . 223
svc_unregister() . 224
svcerr_auth() . 225
svcerr_decode() . 226
svcerr_noproc() . 227
svcerr_noprog() . 228
svcerr_progvers() . 229
svcerr_systemerr() . 230
svcerr_weakauth() . 231
svcraw_create() . 232
svctcp_create() . 233
svcudp_create() . 234
xdr_accepted_reply() . 235
xdr_array() . 236
xdr_authunix_parms() . 237
xdr_bool() . 238
xdr_bytes() . 239
xdr_callhdr() . 240
xdr_callmsg() . 241
xdr_char() . 242
xdr_destroy() . 243
xdr_double() . 244
xdr_enum() . 245
xdr_float() . 247
xdr_free() . 248

Contents vii

xdr_getpos() . 249
xdr_inline() . 250
xdr_int() . 251
xdr_long() . 252
xdr_opaque() . 253
xdr_opaque_auth() . 254
xdr_pmap() . 255
xdr_pmaplist() . 256
xdr_pointer() . 257
xdr_reference() . 258
xdr_rejected_reply(). 259
xdr_replymsg() . 260
xdr_setpos() . 261
xdr_short() . 262
xdr_string() . 263
xdr_text_char() . 264
xdr_u_char() . 265
xdr_u_int() . 266
xdr_u_long() . 267
xdr_u_short() . 268
xdr_union() . 269
xdr_vector() . 271
xdr_void() . 272
xdr_wrapstring() . 273
xdrmem_create(). 274
xdrrec_create() . 275
xdrrec_endofrecord() . 276
xdrrec_eof() . 277
xdrrec_skiprecord() . 278
xdrstdio_create() . 279
xprt_register() . 280
xprt_unregister() . 281
Sample RPC programs . 282

Running RPC sample programs 282
RPC client . 282
RPC server. 283
RPC raw data stream . 285

RPCGEN sample programs. 287
Generating your own sequential data sets 287
Building client and server executable modules 287
Running RPCGEN sample programs 288

Chapter 8. Remote procedure calls in the z/OS UNIX System Services
environment . 289

Deviations from Sun RPC 4.0 289
Source margins . 289
Functions . 289

Using z/OS UNIX System Services RPC 290
Support for 64-bit integers . 290
UDP transport protocol CLIENT handles 291
Restrictions. 291

Chapter 9. Network Computing System (NCS) 293
NCS and the Network Computing Architecture 293
NCS components . 293

Remote procedure call run-time library. 293

viii z/OS V1R4.0 CS: IP Programmer’s Reference

Location broker . 294
Network interface definition language compiler 294

MVS implementation of NCS 294
NCS system IDL data sets . 295
NCS C header data sets and the Pascal include data set 296
NCS RPC run-time library . 296
Portability issues . 296

NCS defines NCSDEFS.H 296
Required user-defined USERDEFS.H 297

Preprocessing, compiling, and linking 298
NCS preprocessor programs 298
Compiling and linking NCS programs 302

Running UUID@GEN . 304
NCS sample programs . 304
The NCSSMP sample program 305

NCS sample redefines . 305
Compiling, linking, and running the sample BINOP program 305

Setup . 306
Compile . 307
Link . 308
Run . 310

Compiling, linking, and running the NCSSMP program 310
Setup . 311
Compile . 312
Link . 313
Run . 314

Compiling, linking, and running the sample BANK program 315
Setup . 316
Compile . 317
Link . 318
Run . 320

Appendix A. TCP/IP in the sysplex 321

Appendix B. Well-known port assignments 323
Well-known UDP port assignments 324

Appendix C. Programming interfaces for providing classification data to
be used in differentiated services policies 327

Passing application classification data on SENDMSG 328
Additional considerations . 331

Appendix D. X Window System interface V11R4 and OSF/Motif version
1.1 . 333

What is provided . 333
Software requirements . 334
How the X Window System interface works in the MVS environment 334
Identifying the target display 336
Application resource file . 336
Creating an application . 337

X Window System header files 337
Compiling and linking . 339

Nonreentrant modules . 339
Reentrant modules . 342

Using sample X Window System programs 344
Running a sample program 344

Contents ix

Standard X client applications 344
Building X client modules 346

X Window System routines . 348
Opening and closing a display 348
Creating and destroying windows. 348
Manipulating windows . 349
Changing window attributes. 349
Obtaining window information 349
Obtaining properties and atoms 350
Manipulating window properties 350
Setting window selections 350
Manipulating colormaps . 350
Manipulating color cells . 351
Creating and freeing pixmaps 351
Manipulating graphics contexts 351
Clearing and copying areas 352
Drawing lines . 352
Filling areas . 353
Loading and freeing fonts 353
Querying character string sizes 354
Drawing text . 354
Transferring images . 354
Manipulating cursors . 354
Handling window manager functions 355
Manipulating keyboard settings 356
Controlling the screen saver 356
Manipulating hosts and access control 356
Handling events . 357
Enabling and disabling synchronization 357
Using default error handling. 357
Communicating with window managers 358
Manipulating keyboard event functions. 359
Manipulating regions . 360
Using cut and paste buffers 360
Querying visual types . 360
Manipulating images . 361
Manipulating bit maps . 361
Using the resource manager 361
Manipulating display functions 362

Extension routines . 364
MIT extensions to X . 365
Associate table functions . 366
Miscellaneous utility routines 366
X authorization routines . 369
X Window System toolkit . 370

Xt Intrinsics routines . 371
Application resources . 379
Athena widget support. 380
OSF/Motif-based widget support 383
z/OS UNIX System Services support 384

What is provided with z/OS UNIX System Services 385
z/OS UNIX System Services software requirements 385
z/OS UNIX System Services application resource file 385
Identifying the target display in z/OS UNIX System Services. 386
Compiling and linking with z/OS UNIX System Services 386
Compiling and linking with z/OS UNIX System Services using c89 388

x z/OS V1R4.0 CS: IP Programmer’s Reference

Standard X client applications for z/OS UNIX System Services 388
Application resources for z/OS UNIX System Services 388

Appendix E. Related protocol specifications (RFCs) 391

Appendix F. Information APARs 399
Information APARs for IP manuals 399
Information APARs for SNA manuals 400
Other information APARs. 400

Appendix G. Accessibility . 403
Using assistive technologies 403
Keyboard navigation of the user interface. 403

Notices . 405
Trademarks. 408

Index . 411

Communicating Your Comments to IBM 421

Contents xi

||

xii z/OS V1R4.0 CS: IP Programmer’s Reference

Figures

1. X Window System and OSF/Motif HFS from a user perspective 165
2. Remote procedure call (client) . 168
3. Remote procedure call (server) . 169
4. Macro to maintain IBM System/370 portability . 297
5. NCSDEFS.H and USERDEFS.H include statements 297
6. MVS X Window System application to server . 335
7. Resources specified for a typical X Window System application 337

© Copyright IBM Corp. 1989, 2002 xiii

xiv z/OS V1R4.0 CS: IP Programmer’s Reference

Tables

1. Components of DPI version 2.0 . 37
2. GETSOCKOPT enhancement benefits . 321
3. TCP well-known port assignments . 323
4. Well-known UDP port assignments . 324
5. Building X client modules based on X11 functions. 346
6. Building X client modules based on Xt Intrinsics and Athena Toolkit functions. 347
7. Opening and closing display . 348
8. Creating and destroying windows . 348
9. Manipulating windows . 349

10. Changing window attributes . 349
11. Obtaining window information. 350
12. Properties and atoms. 350
13. Manipulating window properties . 350
14. Setting window selections . 350
15. Manipulating colormaps . 350
16. Manipulating color cells . 351
17. Creating and freeing pixmaps. 351
18. Manipulating graphics contexts . 351
19. Clearing and copying areas . 352
20. Drawing lines. 352
21. Filling areas . 353
22. Loading and freeing fonts . 353
23. Querying character string sizes . 354
24. Drawing text . 354
25. Transferring images . 354
26. Manipulating cursors . 355
27. Handling window manager functions . 355
28. Manipulating keyboard settings . 356
29. Controlling the screen saver . 356
30. Manipulating hosts and access control . 356
31. Handling events. 357
32. Enabling and disabling synchronization . 357
33. Using default error handling . 357
34. Communicating with window managers . 358
35. Manipulating keyboard event functions . 359
36. Manipulating regions . 360
37. Using cut and paste buffers . 360
38. Querying visual types. 360
39. Manipulating images . 361
40. Manipulating bit maps . 361
41. Using the resource manager . 361
42. Manipulating display functions . 362
43. Extension routines . 364
44. MIT extensions to X . 365
45. Associate table functions . 366
46. Miscellaneous utility routines . 367
47. Authorization routines . 369
48. X Intrinsic header file names . 371
49. Xt Intrinsics routines . 371
50. Athena widget routines . 380
51. Athena header file names . 382
52. OSF/Motif header file names . 384
53. IP information APARs. 399

© Copyright IBM Corp. 1989, 2002 xv

54. SNA information APARs . 400
55. Non-document information APARs . 401

xvi z/OS V1R4.0 CS: IP Programmer’s Reference

About this document

This document describes the syntax and semantics of a set of high-level application
functions that you can use to program your own applications in a TCP/IP
environment. These functions provide support for application facilities, such as user
authentication, distributed databases, distributed processing, network management,
and device sharing. The information in this document supports both IPv6 and IPv4.
Unless explicitly noted, information describes IPv4 networking protocol. IPv6
support is qualified within the text.

This document supports z/OS.e.

Who should use this document
This document is intended for use by an experienced programmer familiar with
multiple virtual storage (MVS™), the IBM® MVS operating system commands, and
the TCP/IP protocols.

This document is written for programmers interested in high-level application
functions that can be used to program applications in a TCP/IP environment. These
functions involve user authentication, distributed databases, distributed processing,
network management, and device sharing.

Before using this document, you should be familiar with the MVS operating system
and the IBM Time Sharing Option (TSO).

Depending on the design and function of your application, you should be familiar
with the C programming language.

In addition, z/OS Communications Server and any required programming products
should already be installed and customized for your network.

Typographic conventions used in this document
This publication uses the following typographic conventions:

v Commands that you enter verbatim onto the command line are presented in
bold.

v Variable information and parameters that you enter within commands, such as
filenames, are presented in italic.

v System responses are presented in monospace.

Where to find more information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the documents in the z/OS™ Communications
Server (z/OS CS) library, along with related publications

© Copyright IBM Corp. 1989, 2002 xvii

|
|
|
|
|
|
|

Where to find related information on the Internet
z/OS

– http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

– http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

– http://www.software.ibm.com/network/commserver/

IBM Communications Server support

– http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

– http://www.redbooks.ibm.com/

IBM Systems Center flashes

– http://www-1.ibm.com/support/techdocs/atsmastr.nsf

IBM

– http://www.ibm.com

RFCs

– http://www.ietf.org/rfc.html

Information about Web addresses can also be found in information APAR II11334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed documents
z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
http://www.ibm.com/servers/resourcelink. Licensed documents are available only to
customers with a z/OS Communications Server license. Access to these documents

xviii z/OS V1R4.0 CS: IP Programmer’s Reference

|

|

|
|

|
|

|

|

|

|

|
|

|

|

|
|

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com
http://www.rfc-editor.org/rfc.html
http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink

requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
http://www.ibm.com/servers/resourcelink. To register for access to the z/OS licensed
documents perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed documents unless you have registered for
access to them and received an e-mail confirmation informing you that your request
has been processed. To access the licensed documents perform the following
steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS Communications Server.

6. Access the licensed document by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

About this document xix

www.ibm.com/servers/resourcelink
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

How to contact IBM service

For immediate assistance, visit this Web site:
http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating Your
Comments to IBM” on page 421.

z/OS Communications Server information
This section contains descriptions of the documents in the z/OS Communications
Server library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

v In hardcopy and softcopy

v In softcopy only

Softcopy information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

xx z/OS V1R4.0 CS: IP Programmer’s Reference

|
|

|
|
|

|
|
|
|

|
|

|
|

http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Titles Order
Number

Description

z/OS V1R4 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication
IBM S/390 Redbooks
Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server library
The following abbreviations follow each order number in the tables below.

HC/SC — Both hardcopy and softcopy are available.

SC — Only softcopy is available. These documents are available on the CD Rom
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN and in information APARs (info
APARs). See Appendix F, “Information APARs” on page 399 for a list of the
documents and the info APARs associated with them.

v Info APARs for OS/390 documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

v Info APARs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Planning and migration:

Title Number Format Description

z/OS Communications
Server: SNA Migration

GC31-8774 HC/SC This document is intended to help you plan for
SNA, whether you are migrating from a previous
version or installing SNA for the first time. This
document also identifies the optional and required
modifications needed to enable you to use the
enhanced functions provided with SNA.

z/OS Communications
Server: IP Migration

GC31-8773 HC/SC This document is intended to help you plan for
TCP/IP Services, whether you are migrating from
a previous version or installing IP for the first
time. This document also identifies the optional
and required modifications needed to enable you
to use the enhanced functions provided with
TCP/IP Services.

z/OS Communications
Server: IPv6 Network
and Application Design
Guide

SC31-8885 HC/SC This document is a high-level introduction to IPv6.
It describes concepts of z/OS Communications
Server’s support of IPv6, coexistence with IPv4,
and migration issues.

About this document xxi

|
|
|

|
|
|
|

|
|
|
|

|

|||||

|
|
|||
|
|
|
|
|

|
|
|||
|
|
|
|
|
|

|
|
|
|

|||
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Resource definition, configuration, and tuning:

Title Number Format Description

z/OS Communications
Server: IP Configuration
Guide

SC31-8775 HC/SC This document describes the major concepts
involved in understanding and configuring an IP
network. Familiarity with the z/OS operating
system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document in conjunction
with the z/OS Communications Server: IP
Configuration Reference.

z/OS Communications
Server: IP Configuration
Reference

SC31-8776 HC/SC This document presents information for people
who want to administer and maintain IP. Use this
document in conjunction with the z/OS
Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications
Server: SNA Network
Implementation Guide

SC31-8777 HC/SC This document presents the major concepts
involved in implementing an SNA network. Use
this document in conjunction with the z/OS
Communications Server: SNA Resource Definition
Reference.

z/OS Communications
Server: SNA Resource
Definition Reference

SC31-8778 HC/SC This document describes each SNA definition
statement, start option, and macroinstruction for
user tables. It also describes NCP definition
statements that affect SNA. Use this document in
conjunction with the z/OS Communications
Server: SNA Network Implementation Guide.

z/OS Communications
Server: SNA Resource
Definition Samples

SC31-8836 SC This document contains sample definitions to help
you implement SNA functions in your networks,
and includes sample major node definitions.

z/OS Communications
Server: AnyNet SNA
over TCP/IP

SC31-8832 SC This guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

z/OS Communications
Server: AnyNet Sockets
over SNA

SC31-8831 SC This guide provides information to help you install,
configure, use, and diagnose sockets over SNA. It
also provides information to help you prepare
application programs to use sockets over SNA.

z/OS Communications
Server: IP Network Print
Facility

SC31-8833 SC This document is for system programmers and
network administrators who need to prepare their
network to route SNA, JES2, or JES3 printer
output to remote printers using TCP/IP Services.

Operation:

xxii z/OS V1R4.0 CS: IP Programmer’s Reference

Title Number Format Description

z/OS Communications
Server: IP User’s Guide
and Commands

SC31-8780 HC/SC This document describes how to use TCP/IP
applications. It contains requests that allow a user
to log on to a remote host using Telnet, transfer
data sets using FTP, send and receive electronic
mail, print on remote printers, and authenticate
network users.

z/OS Communications
Server: IP System
Administrator’s
Commands

SC31-8781 HC/SC This document describes the functions and
commands helpful in configuring or monitoring
your system. It contains system administrator’s
commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also
includes TSO and MVS commands commonly
used during the IP configuration process.

z/OS Communications
Server: SNA Operation

SC31-8779 HC/SC This document serves as a reference for
programmers and operators requiring detailed
information about specific operator commands.

z/OS Communications
Server: Quick Reference

SX75-0124 HC/SC This document contains essential information
about SNA and IP commands.

Customization:

Title Number Format Description

z/OS Communications
Server: SNA
Customization

LY43-0092 SC This document enables you to customize SNA,
and includes the following:

v Communication network management (CNM)
routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for
the CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs:

Title Number Format Description

z/OS Communications
Server: IP Application
Programming Interface
Guide

SC31-8788 SC This document describes the syntax and
semantics of program source code necessary to
write your own application programming interface
(API) into TCP/IP. You can use this interface as
the communication base for writing your own
client or server application. You can also use this
document to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

z/OS Communications
Server: IP CICS Sockets
Guide

SC31-8807 SC This document is for programmers who want to
set up, write application programs for, and
diagnose problems with the socket interface for
CICS using z/OS TCP/IP.

z/OS Communications
Server: IP IMS Sockets
Guide

SC31-8830 SC This document is for programmers who want
application programs that use the IMS TCP/IP
application development services provided by
IBM’s TCP/IP Services.

About this document xxiii

|
|
|
|

|||
|
|
|
|
|
|

Title Number Format Description

z/OS Communications
Server: IP Programmer’s
Reference

SC31-8787 SC This document describes the syntax and
semantics of a set of high-level application
functions that you can use to program your own
applications in a TCP/IP environment. These
functions provide support for application facilities,
such as user authentication, distributed
databases, distributed processing, network
management, and device sharing. Familiarity with
the z/OS operating system, TCP/IP protocols, and
IBM Time Sharing Option (TSO) is recommended.

z/OS Communications
Server: SNA
Programming

SC31-8829 SC This document describes how to use SNA
macroinstructions to send data to and receive
data from (1) a terminal in either the same or a
different domain, or (2) another application
program in either the same or a different domain.

z/OS Communications
Server: SNA
Programmer’s LU 6.2
Guide

SC31-8811 SC This document describes how to use the SNA LU
6.2 application programming interface for host
application programs. This document applies to
programs that use only LU 6.2 sessions or that
use LU 6.2 sessions along with other session
types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications
Server: SNA
Programmer’s LU 6.2
Reference

SC31-8810 SC This document provides reference material for the
SNA LU 6.2 programming interface for host
application programs.

z/OS Communications
Server: CSM Guide

SC31-8808 SC This document describes how applications use
the communications storage manager.

z/OS Communications
Server: CMIP Services
and Topology Agent
Guide

SC31-8828 SC This document describes the Common
Management Information Protocol (CMIP)
programming interface for application
programmers to use in coding CMIP application
programs. The document provides guide and
reference information about CMIP services and
the SNA topology agent.

Diagnosis:

Title Number Format Description

z/OS Communications
Server: IP Diagnosis

GC31-8782 HC/SC This document explains how to diagnose TCP/IP
problems and how to determine whether a
specific problem is in the TCP/IP product code. It
explains how to gather information for and
describe problems to the IBM Software Support
Center.

z/OS Communications
Server: SNA Diagnosis
Vol 1, Techniques and
Procedures and z/OS
Communications Server:
SNA Diagnosis Vol 2,
FFST Dumps and the
VIT

LY43-0088

LY43-0089

HC/SC These documents help you identify an SNA
problem, classify it, and collect information about
it before you call the IBM Support Center. The
information collected includes traces, dumps, and
other problem documentation.

xxiv z/OS V1R4.0 CS: IP Programmer’s Reference

Title Number Format Description

z/OS Communications
Server: SNA Data Areas
Volume 1 and z/OS
Communications Server:
SNA Data Areas Volume
2

LY43-0090

LY43-0091

SC These documents describe SNA data areas and
can be used to read an SNA dump. They are
intended for IBM programming service
representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes:

Title Number Format Description

z/OS Communications
Server: SNA Messages

SC31-8790 HC/SC This document describes the ELM, IKT, IST, ISU,
IUT, IVT, and USS messages. Other information
in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications
Server: IP Messages
Volume 1 (EZA)

SC31-8783 HC/SC This volume contains TCP/IP messages
beginning with EZA.

z/OS Communications
Server: IP Messages
Volume 2 (EZB)

SC31-8784 HC/SC This volume contains TCP/IP messages
beginning with EZB.

z/OS Communications
Server: IP Messages
Volume 3 (EZY)

SC31-8785 HC/SC This volume contains TCP/IP messages
beginning with EZY.

z/OS Communications
Server: IP Messages
Volume 4 (EZZ-SNM)

SC31-8786 HC/SC This volume contains TCP/IP messages
beginning with EZZ and SNM.

z/OS Communications
Server: IP and SNA
Codes

SC31-8791 HC/SC This document describes codes and other
information that appear in z/OS Communications
Server messages.

APPC Application Suite:

Title Number Format Description

z/OS Communications
Server: APPC
Application Suite User’s
Guide

SC31-8809 SC This documents the end-user interface (concepts,
commands, and messages) for the AFTP,
ANAME, and APING facilities of the APPC
application suite. Although its primary audience is
the end user, administrators and application
programmers may also find it useful.

z/OS Communications
Server: APPC
Application Suite
Administration

SC31-8835 SC This document contains the information that
administrators need to configure the APPC
application suite and to manage the APING,
ANAME, AFTP, and A3270 servers.

z/OS Communications
Server: APPC
Application Suite
Programming

SC31-8834 SC This document provides the information
application programmers need to add the
functions of the AFTP and ANAME APIs to their
application programs.

About this document xxv

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communications Server for OS/390 V2R7 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Migrating Subarea Networks to an IP Infrastructure SG24–5957

Related information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents.

The table below lists documents that may be helpful to readers.

Title Number

z/OS Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS Security Server LDAP Client Programming SC24-5924

z/OS Security Server LDAP Server Administration and Use SC24-5923

Understanding LDAP SG24-4986

z/OS UNIX System Services Programming: Assembler Callable
Services Reference

SA22-7803

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services User’s Guide SA22-7801

z/OS UNIX System Services Planning GA22-7800

z/OS MVS Using the Subsystem Interface SA22-7642

xxvi z/OS V1R4.0 CS: IP Programmer’s Reference

||

|
|
|
|

|

|

|||

||

||

||

||

||

||

||

||

||

|
|
|

||

||

||

||

Title Number

z/OS C/C++ Run-Time Library Reference SA22-7821

z/OS Program Directory GI10-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR,
1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and
Associates, 1997

ISBN 156592–222–0

TCP/IP Tutorial and Technical Overview GG24-3376

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens,
Addison-Wesley Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright
and W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens,
Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

z/OS System Secure Sockets Layer Programming SC24-5901

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

v At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

About this document xxvii

||

||

||

||

|
|
|

|
|
|

||

|
|
|

|
|
|

|
|
|

||

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

xxviii z/OS V1R4.0 CS: IP Programmer’s Reference

Summary of changes

Summary of changes
for SC31-8787-02
z/OS Version 1 Release 4

This document contains information previously presented in SC31-8787-01, which
supports z/OS Version 1 Release 2. The information in this document supports both
IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking
protocol. IPv6 support is qualified within the text.

New information:

v Information about using the QoS classification data on AF_INET6 sockets (see
page 331)

An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

Summary of changes
for SC31-8787-01
z/OS Version 1 Release 2

This document contains information previously presented in SC31-8787-00, which
supports z/OS Version 1 Release 1.

New information

v Network management:

– SNMP agent/subagent security

v Programming interfaces for providing classification data to be used in
differentiated services policies

Changed information

v Definitions of localhost for SNMP for DPI®:

– The agent_hostname description

– Examples of localhost to 127.0.0.1

– Character set selection description

– Connecting to the agent description

– The -h hostname description

v Network management:

– SNMP community name used in connecting to the SNMP agent must be
specified in ASCII. EBCDIC is no longer tolerated.

© Copyright IBM Corp. 1989, 2002 xxix

Deleted information

v Chapter on Kerberos Authentication System

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SC31-8787-00
z/OS Version 1 Release 1

This document contains information also presented in OS/390 V2R8 SecureWay
Communications Server: IP Programmer’s Reference.

xxx z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 1. General programming information

The information presented in this reference applies only to IPv4, AF_INET sockets
unless specified as IPv6.

For the fundamental technical information you need to know before you attempt to
work with the application program interfaces (APIs) provided with TCP/IP, refer to
the z/OS Communications Server: IP Application Programming Interface Guide.

The modules generated by the new compiler are similar to those produced by the
AD/Cycle® compiler.

Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0
Two levels of Distributed Protocol Interface (DPI) are supported by z/OS
Communications Server. The following shows some support differences between
the two versions:

v Support provided by DPI Version 1.1

– Was supported on earlier releases of TCP/IP and continues to be supported
by the SNMP agent; existing subagents written with DPI Version 1.1 still run
with no changes required.

– Supports SNMP Version 1 protocols, but not SNMP Version 2.

– Is intended for standard C socket users, not z/OS UNIX C socket users.

– Supports connections from subagents using TCP sockets.

– Is documented in RFC 1228.

v Support provided by DPI Version 2.0:

– Is supported in TCP/IP z/OS UNIX and above.

– Contains more functions that make writing a subagent easier.

– Supports both SNMP Version 1 and Version 2 protocols.

– Is used by z/OS UNIX C socket users but not standard C socket users.

– Supports connections from subagents using TCP sockets and UNIX® Stream
sockets.

– Is documented in RFC 1592.

While DPI Version 1.1 can continue to be used by existing subagents, IBM
recommends that users who are writing new subagents or modifying old ones
consider upgrading to DPI Version 2.0 to take advantage of the SNMP Version 2
protocols and the greater functionality of DPI Version 2.0.

Although the SNMP agent shipped with z/OS CS is now enabled to support SNMP
Version 3 (SNMPv3), no changes are required to subagents written with either DPI
Version 1.1 or Version 2.0. SNMPv3 did not introduce any new protocol data unit
(PDU) types. Support for the SNMPv3 framework is handled by the SNMP agent.

Users of DPI Version 1.1 must compile using the DPI library routines provided in
hlq.SEZADPIL and the version of the header file, snmp_dpi.h, provided in
hlq.SEZACMAC. See Chapter 2, “SNMP agent Distributed Protocol Interface
version 1.1” on page 3 for additional details.

Users of DPI Version 2.0 must compile using the DPI library routines provided in
the HFS directory /usr/lpp/tcpip/snmp/build/libdpi20 and the DPI Version 2.0 copy of

© Copyright IBM Corp. 1989, 2002 1

|
|

the header file, snmp_dpi.h in /usr/lpp/tcpip/snmp/include. Additional details are in
Chapter 3, “SNMP agent Distributed Protocol Interface version 2.0” on page 35.

For information about migrating an existing subagent from DPI Version 1.1 to DPI
Version 2.0, see “Migrating your SNMP DPI subagent to version 2.0” on page 39.

2 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 2. SNMP agent Distributed Protocol Interface version
1.1

The simple network management protocol (SNMP) agent Distributed Protocol
Interface (DPI) permits you to dynamically add, delete, or replace management
variables in the local management information base (MIB) without recompiling the
SNMP agent. The DPI protocol is also supported by SNMP agents on other IBM
platforms. This makes it easier to port subagents between those platforms.

For more information about the DPI interface, refer to RFC 1228.

SNMP agents and subagents
To allow the subagents to perform their functions, the SNMP agent binds to an
arbitrarily chosen TCP port and listens for connection requests from subagents. A
well-known port is not used. Every invocation of the SNMP agent potentially results
in a different TCP port being used.

Agents, or SNMP servers, are responsible for performing the network management
functions requested by the network management stations.

A subagent provides an extension to the functionality provided by the SNMP agent.
The subagent allows you to define your own MIB variables, which are useful in your
environment, and register them with the SNMP agent. When requests for these
variables are received by the SNMP agent, the agent passes the request to the
subagent and returns a response to the agent. The SNMP agent creates an SNMP
response packet and sends the response to the remote network management
station that initiated the request. The existence of the subagent is transparent to the
network management station.

A subagent of the SNMP agent determines the port number by sending a GET
request for an MIB variable, which represents the value of the TCP port. The
subagent is not required to create and parse SNMP packets, because the DPI
application program interface (API) has a library routine query_DPI_port(). After the
subagent obtains the value of the DPI TCP port, it should make a TCP connection
to the appropriate port. After a successful socket connect() call, the subagent
registers the set of variables it supports with the SNMP agent. For information
about the connect() call refer to the z/OS Communications Server: IP Application
Programming Interface Guide. When all variable classes are registered, the
subagent waits for requests from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent’s security product resource name for the connection to be accepted. Refer to
the SNMP chapter in the z/OS Communications Server: IP Configuration Guide for
more information about security product access between subagents and the z/OS
Communications Server SNMP agent.

© Copyright IBM Corp. 1989, 2002 3

Processing DPI requests
The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These
requests correspond to the three SNMP requests that a network management
station can make. The subagent responds to a request with a response packet. The
response packet can be created using the mkDPIresponse() library routine, which is
part of the DPI API library.

The SNMP subagent can only initiate two requests: REGISTER and TRAP. A
REGISTER request indicates to the SNMP agent which MIB variables are
supported by the subagent. A TRAP request notifies the SNMP agent of an
asynchronous event that should be sent to network management stations.

Processing a GET request
The DPI packet is parsed to get the object ID of the requested variable. If the
specified object ID of the requested variable is not supported by the subagent, the
subagent returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or
value information is not returned. For example:
unsigned char *cp;

cp = mkDPIresponse(SNMP_NO_SUCH_NAME,0);

If the object ID of the variable is supported, an error is not returned and the name,
type, and value of the object ID are returned using the mkDPIset() and
mkDPIresponse() routines. The following is an example of an object ID, whose type
is string, being returned.
char *obj_id;

unsigned char *cp;
struct dpi_set_packet *ret_value;
char *data;

data = "a string to be returned";
ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,

strlen(data)+1,data);
cp = mkDPIresponse(0,ret_value);

Processing a SET request
Processing a SET request is similar to processing a GET request, but the SNMP
agent passes additional information to the subagent. This additional information
consists of the type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error
indication of SNMP_NO_SUCH_NAME. If the object ID of the variable is supported,
but cannot be set, an error indication of SNMP_READ_ONLY is returned. If the
object ID of the variable is supported, and is successfully set, the message
SNMP_NO_ERROR is returned.

Processing a GET-NEXT request
Parsing a GET-NEXT request yields two parameters: the object ID of the requested
variable and the reason for this request. This allows the subagent to return the
name, type, and value of the next supported variable, whose name lexicographically
follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the
subagent cannot jump from one group to another. You must determine the reason

4 z/OS V1R4.0 CS: IP Programmer’s Reference

for the request to then determine the path to traverse in the MIB tree. The second
parameter contains this reason and is the group prefix of the MIB tree that is
supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this
group prefix, the subagent must return SNMP_NO_SUCH_NAME. If required, the
SNMP agent calls on the subagent again and passes a different group prefix.

For example, if you have two subagents, the first subagent registers two group
prefixes, A and C, and supports variables A.1, A.2, and C.1. The second subagent
registers the group prefix B, and supports variable B.1.

When a remote management station begins dumping the MIB, starting from A, the
following sequence of queries is performed:
Subagent 1 gets called:

get-next(A,A) == A.1
get-next(A.1,A) == A.2
get-next(A.2,A) == error(no such name)

Subagent 2 is then called:

get-next(A.2,B) == B.1
get-next(B.1,B) == error(no such name)

Subagent 1 is then called:
get-next(B.1,C) == C.1
get-next(C.1,C) == error(no such name)

Processing a REGISTER request
A subagent must register the variables that it supports with the SNMP agent.
Packets can be created using the mkDPIregister() routine.

For example:
unsigned char *cp;

cp = mkDPIregister("1.3.6.1.2.1.1.2.");

Note: Object IDs are registered with a trailing period (.).

Processing a TRAP request
A subagent can request that the SNMP agent generate a TRAP. The subagent must
provide the desired values for the generic and specific parameters of the TRAP. The
subagent can optionally provide a name, type, and value parameter. The DPI API
library routine mkDPItrap() can be used to generate the TRAP packet.

SNMP agent DPI header files
The following header is required to run SNMP DPI applications:

snmp_dpi.h

Compiling and linking
You can use several methods to compile, link-edit, and execute your TCP/IP C
source program in MVS. This section contains information about the data sets that
you must include to run your C source program under MVS batch, using
IBM-supplied cataloged procedures.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 5

The following list contains partitioned data set names, which are used as examples
in the following JCL statements:

USER.MYPROG.C
Contains user C source programs

USER.MYPROG.C(PROGRAM1)
Member PROGRAM1 in USER.MYPROG.C partitioned data set

USER.MYPROG.H
Contains user #include data sets

USER.MYPROG.OBJ
Contains object code for the compiled versions of user C programs in
USER.MYPROG.C

USER.MYPROG.LOAD
Contains link-edited versions of user programs in USER.MYPROG.OBJ

Sample compile cataloged procedure additions
Include the following in the compile step of your cataloged procedure. Cataloged
procedures are included in the IBM-supplied samples for your MVS system.

v Add the following statement as the first //SYSLIB DD statement;

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement;

//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

Sample link-edit cataloged procedure additions
Include the following in the link-edit step of your cataloged procedure.

Add the following statements after the //SYSLIB DD statement;

// DD DSN=hlq.SEZACMTX,DISP=SHR
// DD DSN=hlq.SEZADPIL,DISP=SHR

Note: For more information about compiling and linking, refer to the z/OS C/C++
User’s Guide.

SNMP DPI library routines
This section provides the syntax, parameters, and other appropriate information for
each DPI routine supported by TCP/IP.

mkDPIlist()

Parameters

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPIlist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;
char *oid_name;
int type;
int len;
char *value;

6 z/OS V1R4.0 CS: IP Programmer’s Reference

packet A pointer to a structure dpi_set_packet, or NULL

oid_name The object identifier of the variable

type The type of the value

len The length of the value

value A pointer to the value

Description: The mkDPIlist() routine can be used to create the portion of the
parse tree that represents a list of name and value pairs. Each entry in the list
represents a name and value pair (as would normally be returned in a response
packet). If the pointer packet is NULL, a new dpi_set_packet structure is
dynamically allocated and the pointer to that structure is returned. The structure will
contain the new name and value pair. If the pointer packet is not NULL, a new
dpi_set_packet structure is dynamically allocated and chained to the list. The new
structure will contain the new name and value pair. The pointer packet will be
returned to the caller. If an error is detected, a NULL pointer is returned.

The value of type can be the same as for mkDPIset(). These are defined in the
snmp_dpi.h header file.

The dpi_set_packet structure has a next pointer [0 in case of a mkDPIset() call and
is also 0 upon the first mkDPIlist() call]. The structure looks like this:
struct dpi_set_packet {

char *object_id;
unsigned char type;
unsigned short value_len;
char *value;
struct dpi_set_packet *next;

};

fDPIparse()

Parameters

hdr Specifies a parse tree.

Description: The fDPIparse() routine frees a parse tree that was previously
created by a call to pDPIpacket(). After calling fDPIparse(), you cannot make
additional references to the parse tree.

Return Values: None.

mkDPIregister()

Parameters

#include <snmp_dpi.h>
#include <bsdtypes.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPIregister(oid_name)
char *oid_name;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 7

oid_name Specifies the object identifier of the variable to be registered. Object
identifiers are registered with a trailing period (.).

Description: The mkDPIregister() routine creates a register request packet and
returns a pointer to a static buffer, which holds the packet contents. The length of
the remaining packet is stored in the first 2 bytes of the packet.

Return Values: If successful, returns a pointer to a static buffer containing the
packet contents. A NULL pointer is returned if an error is detected during the
creation of the packet.

Example: The following is an example of the mkDPIregister() call.
unsigned char *packet;
int len;

packet = mkDPIregister(“1.3.6.1.2.1.1.1.“);

len = *packet * 256 + *(packet + 1);

mkDPIresponse()

Parameters

ret_code Specifies the error code to be returned.

value_list Indicates a pointer to a parse tree containing the name, type, and
value information to be returned.

Description: The mkDPIresponse() routine creates a response packet. The first
parameter, ret_code, is the error code to be returned. Zero indicates no errors.
Possible errors include the following:

v SNMP_BAD_VALUE

v SNMP_GEN_ERR

v SNMP_NO_ERROR

v SNMP_NO_SUCH_NAME

v SNMP_READ_ONLY

v SNMP_TOO_BIG

Refer to the snmp_dpi.h header file for a description of these messages.

If ret_code does not indicate an error, the second parameter is a pointer to a parse
tree created by mkDPIset(), which represents the name, type, and value of the
information being returned. If an error is indicated, the second parameter is passed
as a NULL pointer.

The length of the remaining packet is stored in the first 2 bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPIresponse(ret_code, value_list)
int ret_code;
struct dpi_set_packet *value_list;

8 z/OS V1R4.0 CS: IP Programmer’s Reference

Return Values: If successful, mkDPIresponse() returns a pointer to a static buffer
containing the packet contents. This is the same buffer used by mkDPIregister(). A
NULL pointer is returned if an error is detected during the creation of the packet.

Example: The following is an example of the mkDPIresponse() call.
unsigned char *packet;

int error_code;
struct dpi_set_packet *ret_value;

packet = mkDPIresponse(error_code, ret_value);

len = *packet * 256 + *(packet + 1);

mkDPIset()

Parameters

oid_name Specifies the object identifier of the variable.

type Specifies the type of the object identifier.

len Indicates the length of the value.

value Indicates the pointer to the first byte of the value of the object
identifier.

Description: The mkDPIset() routine can be used to create the portion of a parse
tree that represents a name and value pair (as would normally be returned in a
response packet). It returns a pointer to a dynamically allocated parse tree
representing the name, type, and value information. If an error is detected while
creating the parse tree, a NULL pointer is returned.

The value of type can be one of the following, which are defined in the snmp_dpi.h
header file:

v SNMP_TYPE_COUNTER

v SNMP_TYPE_GAUGE

v SNMP_TYPE_INTERNET

v SNMP_TYPE_NUMBER

v SNMP_TYPE_OBJECT

v SNMP_TYPE_STRING

v SNMP_TYPE_TICKS

The value parameter is always a pointer to the first byte of the object ID value.

Note: The parse tree is dynamically allocated, and copies are made of the passed
parameters. After a successful call to mkDPIset(), the application can
dispose of the passed parameters without affecting the contents of the parse
tree.

#include <snmp_dpi.h>
#include <bsdtypes.h>

struct dpi_set_packet *mkDPIset(oid_name, type, len, value)
char *oid_name;
int type;
int len;
char *value;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 9

Return Values: Returns a pointer to a parse tree containing the name, type, and
value information.

mkDPItrap()

Parameters

generic Specifies the generic field in the SNMP TRAP packet.

specific Specifies the specific field in the SNMP TRAP packet.

value_list Used to pass the name and value pair to be placed into the SNMP
packet.

Description: The mkDPItrap() routine creates a TRAP request packet. The
information contained in value_list is passed as the set_packet portion of the parse
tree.

The length of the remaining packet is stored in the first 2 bytes of the packet.

Note: mkDPItrap() always frees the passed parse tree.

Return Values: If the packet can be created, a pointer to a static buffer
containing the packet contents is returned. This is the same buffer that is used by
mkDPIregister(). If an error is encountered while creating the packet, a NULL
pointer is returned.

Example: The following is an example of the mkDPItrap() call.
struct dpi_set_packet *if_index_value;
unsigned long data;
unsigned char *packet;
int len;

if_index_value = mkDPIset(“1.3.6.1.2.1.2.2.1.1“, SNMP_TYPE_NUMBER,
sizeof(unsigned long), &data);

packet = mkDPItrap(2, 0, if_index_value);
len = *packet * 256 + *(packet + 1);
write(fd,packet,len);

mkDPItrape()

Parameters

generic The generic field for the SNMP TRAP packet.

#include <snmp_dpi.h>
#include <bsdtypes.h>

unsigned char *mkDPItrap(generic, specific, value_list)
int generic;
int specific;
struct dpi_set_packet *value_list;

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer */
long int specific;
struct dpi_set_packet *value_list;
char *enterprise_oid;

10 z/OS V1R4.0 CS: IP Programmer’s Reference

specific The specific field for the SNMP TRAP packet.

value_list A pointer to a structure dpi_set_packet, which contains one or more
variables to be sent with the SNMP TRAP packet. Or NULL if no
variables are to be sent.

enterprise_oid A pointer to a character string representing the enterprise object ID
(in ASN.1 notation, e.g. 1.3.6.1.4.1.2.2.1.4). Or NULL if you want
the SNMP agent to use its own enterprise object ID.

Description: The mkDPItrape() routine can be used to create an extended trap.
It is basically the same as the mkDPItrap() routine, but allows you to pass a list of
variables, and also an enterprise object ID.

pDPIpacket()

Parameters

packet Specifies the DPI packet to be parsed.

Description: The pDPIpacket() routine parses a DPI packet and returns a parse
tree representing its contents. The parse tree is dynamically allocated and contains
copies of the information within the DPI packet. After a successful call to
pDPIpacket(), the packet can be disposed of in any manner the application
chooses, without affecting the contents of the parse tree.

Return Values: If pDPIpacket() is successful, a parse tree is returned. If an error
is encountered during the parse, a NULL pointer is returned.

Note: The parse tree structures are defined in the snmp_dpi.h header file.

Example: The following is an example of the mkDPIpacket() call.

The root of the parse tree is represented by an snmp_dpi_hdr structure.
struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_minor;
unsigned char proto_release;

unsigned char packet_type;
union {

struct dpi_get_packet *dpi_get;
struct dpi_next_packet *dpi_next;
struct dpi_set_packet *dpi_set;
struct dpi_resp_packet *dpi_response;
struct dpi_trap_packet *dpi_trap;

} packet_body;
};

The packet_type field can have one of the following values, which are defined in the
snmp_dpi.h header file:

v SNMP_DPI_GET

v SNMP_DPI_GET_NEXT

#include <snmp_dpi.h>
#include <bsdtypes.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 11

v SNMP_DPI_SET

The packet_type field indicates the request that is made of the DPI client. For each
of these requests, the remainder of the packet_body is different. If a GET request is
indicated, the object ID of the desired variable is passed in a dpi_get_packet
structure.
struct dpi_get_packet {

char *object_id;
};

A GET-NEXT request is similar, but the dpi_next_packet structure also contains the
object ID prefix of the group that is currently being traversed.
struct dpi_next_packet {

char *object_id;
char *group_id;

};

If the next object, whose object ID lexicographically follows the object ID indicated
by object_id, does not begin with the suffix indicated by the group_id, the DPI client
must return an error indication of SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it, and this is contained in a
dpi_set_packet structure.
struct dpi_set_packet {

char *object_id;
unsigned char type;
unsigned short value_len;
char *value;
struct dpi_set_packet *next;

};

The object ID of the variable to be modified is indicated by object_id. The type of
the variable is provided in type and can have one of the following values:

v SNMP_TYPE_COUNTER

v SNMP_TYPE_EMPTY

v SNMP_TYPE_GAUGE

v SNMP_TYPE_INTERNET

v SNMP_TYPE_NUMBER

v SNMP_TYPE_OBJECT

v SNMP_TYPE_STRING

v SNMP_TYPE_TICKS

The length of the value to be set is stored in value_len and value contains a pointer
to the value.

Note: The storage pointed to by value is reclaimed when the parse tree is freed.
The DPI client must make provision for copying the value contents.

query_DPI_port()

#include <snmp_dpi.h>
#include <bsdtypes.h>

int query_DPI_port (host_name, community_name)
char *host_name;
char *community_name;

12 z/OS V1R4.0 CS: IP Programmer’s Reference

Parameters

host_name Specifies a pointer to the SNMP agent host name or internet
address.

community_name
Specifies a pointer to the community name to be used when
making a request. The community_name constant must be
specified in ASCII.

Description: The query_DPI_port() routine is used by a DPI client to determine
the TCP port number that is associated with the DPI. This port number is needed to
connect() to the SNMP agent. The port number is obtained through an SNMP GET
request.

Return Values: An integer representing the TCP port number is returned if
successful; a −1 is returned if the port cannot be determined.

Sample SNMP DPI client program for C sockets for version 1.1
This section contains an example of an SNMP DPI client program. The DPISAMPL
program can be run using the SNMP agents that support the SNMP-DPI interface
as described in RFC 1228.

It can be used to test agent DPI implementations because it provides variables of
all types and allows you to generate traps of all types.

DPISAMPL implements a set of variables in the dpiSample table, which consists of
a set of objects in the IBM Research tree (1.3.6.1.2.2.1.4). See “dpiSample table
MIB descriptions” on page 15 for the objectID and type of each object.

Using the DPISAMPL program
The DPISAMPL program accepts the following arguments:

? Explains the usage.

-d n Sets the debug at level n. The range is from 0 (for no messages) to
4 (for the most verbose). The default is 0. If a number greater than
4 is specified, tracing is set to level 4.

-trap gtype stype data
Generates a trap of the generic type gtype, of the specific type
stype, and pass data as an additional value for the variable
dpiSample.stype.0. The values for gtype are from 0 through 5. The
values for stype indicate how data is interpreted. The following
values are valid for stype:

1 number

2 octet string

3 object ID

4 empty (ignored)

5 internet address

6 counter

7 gauge

8 time ticks

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 13

9 display string

10 octet string

-std_traps Generates or simulates the standard SNMP traps, which are the
generic types 0 through 5. This includes a link down trap.

-ent_traps Generates extended enterprise-specific traps, which are specific
types 1 through 9, using the internal dpiSample variables.

ent_trapse Generates extended enterprise-specific traps, which are specific
types 11 through 19.

-all_traps Generates std_traps, ent_traps, and ent_trapse.

-iucv Uses an AF_IUCV socket to connect to the SNMP agent. This is
the default.

Note: Although the IUCV API is no longer supported, use of the
IUCV interaddress space communication mechanism is
supported.

-u agent_userid
Specifies the user ID where the SNMP agent is running. The default
is SNMPD.

-inet Uses an AF_INET socket to connect to the SNMP agent.

agent_hostname
Specifies the host name of the system where an SNMP
DPI-capable agent is running. The default is localhost.

Note: The localhost value is not defined by default on z/OS.
Ensure localhost is defined to the name server or in the host
name resolution file as the local IP address if the
agent_hostname parameter is not explicitly specified.

community_name
Specifies the community name, which is required to get the dpiPort.
The default is public.

DPISAMPN NCCFLST for the SNMP manager
The DPISAMPN NCCFLST allows you to exercise the DPISAMPL subagent from a
Tivoli® NetView® SNMP management station. The DPISAMPL subagent must be
running. This sample allows you to specify which test function you want to run.

You can specify the following on Tivoli NetView:

agent_host name
Specifies the host name or IP address of the system where the SNMP
agent is running.

community_name
Specifies the community name. The CLIST makes the community name
uppercases so the SNMP agent must be configured to accept the
community name in uppercase.

function
Specifies the test function to be performed. Valid test functions are:

ALL Runs all of the tests. This is the default.

GET Retrieves the dpiSample variables one at a time.

14 z/OS V1R4.0 CS: IP Programmer’s Reference

GETNEXT
Retrieves all the dpiSample variables.

ONEGET
Retrieves all the dpiSample variables with one GET.

ONESET
Sets all the dpiSample variables at once.

QUIT Causes the DPISAMPLE subagent to terminate.

SET Sets the dpiSample variables one at a time with one SET.

TRAPS
Instructs the DPISAMPLE subagent to generate nine
enterprise-specific traps.

The NCCFLST assumes that the definitions for the dpiSample table (see
“dpiSample table MIB descriptions”) have been added to the hlq.MIBDESC.DATA
file. You can also GET, GETNEXT, or SET dpiSample variables with regular SNMP
GET/GETNEXT/SET commands.

The DPISAMPL subagent recognizes a few special values in the variable
dpiSampleCommand. The following are the special values and their associated
subagent actions.

all_traps
Generates std_traps, ent_traps, and ent_trapse.

ent_traps
Generates extended enterprise-specific traps, which are specific types 1
through 9, using the internal dpiSample variables.

ent_trapse
Generates extended enterprise-specific traps, which are specific types 11
through 19.

quit Causes the subagent to terminate.

std_traps
Generates or simulates the standard SNMP traps, which are the generic
types 0 through 5. This includes a link down trap.

Compiling and linking the DPISAMPL.C source code
The source code for the sample DPI program can be found in the hlq.SEZAINST
data set, member DPISAMPL.

You can specify the following compile time flags:

_NO_PROTO
The DPISAMPL.C code assumes that it is compiled with an ANSI-C
compliant compiler. It can be compiled without ANSI-C by defining this flag.

MVS Indicates that compilation is for MVS®, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

When linking the DPISAMPL code, you must use the hlq.SEZADPIL data set. It
contains the SNMP-DPI interface routines as described in RFC 1228.

dpiSample table MIB descriptions
The following shows the MIB descriptions for the dpiSample table.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 15

DPISAMPLE.C supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects
dpiSample 1.3.6.1.4.1.2.2.1.4. table 0
dpiSampleNumber 1.3.6.1.4.1.2.2.1.4.1. number 10
next one is to be able to send a badValue with a SET request
dpiSampleNumberString 1.3.6.1.4.1.2.2.1.4.1.1. string 10
dpiSampleOctetString 1.3.6.1.4.1.2.2.1.4.2. string 10
dpiSampleObjectID 1.3.6.1.4.1.2.2.1.4.3. object 10
XGMON/SQESERV does not allow to specify empty (so use empty string)
dpiSampleEmpty 1.3.6.1.4.1.2.2.1.4.4. string 10
dpiSampleInetAddress 1.3.6.1.4.1.2.2.1.4.5. internet 10
dpiSampleCounter 1.3.6.1.4.1.2.2.1.4.6. counter 10
dpiSampleGauge 1.3.6.1.4.1.2.2.1.4.7. gauge 10
dpiSampleTimeTicks 1.3.6.1.4.1.2.2.1.4.8. ticks 10
dpiSampleDisplayString 1.3.6.1.4.1.2.2.1.4.9. display 10
dpiSampleCommand 1.3.6.1.4.1.2.2.1.4.10. display 1

Notes:

1. dpiSample object is not accessible.

2. dpiSampleNumber object is only accessible for the SNMP GET command.

3. dpiSampleNumberString object is only accessible for the SNMP GET command.

4. dpiSampleEmpty object is not accessible for the SNMP SET command.

The DPISAMPL.C source code
The following is the source code for the DPISAMPL.C program.

Note: The characters shown below might vary due to differences in character sets.
This code is included as an example only.

/***/
/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC02Z */
/* File name: tcpip.SEZAINST(DPISAMPL) */
/* */
/* */
/* SNMP-DPI - SNMP Distributed Programming Interface */
/* */
/* May 1991 - Version 1.0 - SNMP-DPI Version 1.0 (RFC1228) */
/* Created by IBM Research. */
/* Feb 1992 - Version 1.1 - Allow enterpriseID to be passed with */
/* a (enterprise specific) trap */
/* - allow multiple variables to be passed */
/* - Use 4 octets (INTEGER from RFC1157) */
/* for generic and specific type. */
/* Jun 1992 - Make it run on OS/2 as well */
/* */
/* Copyright None */
/* */
/* dpisampl.c - a sample SNMP-DPI subagent */
/* - can be used to test agent DPI implementations. */
/* */
/* $P1= MV11816 TCPV3R2 960524 jab: zero siucv fields for connect */
/* */
/***/
/* For testing with XGMON and/or SQESERV (SNMP Query Engine) */
/* it is best to keep the following define for OID in sync */
/* with the dpiSample objectID in the MIB description file */
/* (mib_desc for XGMON, MIBDESC DATA for SQESERV on VM and */
/* MIBDESC.DATA for SQESERV on MVS). */
/***/
#define OID "1.3.6.1.4.1.2.2.1.4."
#define ENTERPRISE_OID "1.3.6.1.4.1.2.2.1.4" /* dpiSample */
#define ifIndex "1.3.6.1.2.1.2.2.1.1.0"
#define egpNeighAddr "1.3.6.1.2.8.5.1.2.0"

16 z/OS V1R4.0 CS: IP Programmer’s Reference

#define PUBLIC_COMMUNITY_NAME "public"
#if defined(VM) || defined(MVS)
#define SNMPAGENTUSERID "SNMPD"
#define SNMPIUCVNAME "SNMP_DPI"
#pragma csect(CODE, "$DPISAMP")
#pragma csect(STATIC,"#DPISAMP")
#include <manifest.h> /* VM specific things */
#include "snmpnms.h" /* short external names for VM/MVS */
#include "snmp@vm.h" /* more of those short names */
#include <saiucv.h>
#include <bsdtime.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <inet.h>
#define asciitoebcdic asciitoe
#define ebcdictoascii ebcdicto
extern char ebcdictoÝ}, asciitoeÝ};
#pragma linkage(cmxlate,OS)
#define DO_ETOA(a) cmxlate((a),ebcdictoascii,strlen((a)))
#define DO_ATOE(a) cmxlate((a),asciitoebcdic,strlen((a)))
#define DO_ERROR(a) tcperror((a))
#define LOOPBACK "loopback"
#define IUCV TRUE
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
#else /* we are not on VM or MVS */
#ifdef OS2
#include <stdlib.h>
#include <types.h>
#include <doscalls.h>
#ifndef sleep
#define sleep(a) DOSSLEEP(1000 * (a))
#endif
#define close soclose
#endif
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
// #include <arpa/inet.h>
#define DO_ETOA(a) ; /* no need for this */
#define DO_ATOE(a) ; /* no need for this */
#define DO_ERROR(a) perror((a))
#define LOOPBACK "localhost"
#define IUCV FALSE
#ifdef AIX221
#define isdigit(c) (((c) >= ’0’) && ((c) <= ’9’))
#else
// #include <sys/select.h>
#endif /* AIX221 */
#endif /* defined(VM) || defined(MVS) */
#include <stdio.h>
#include "snmp@dpi.h"
#define WAIT_FOR_AGENT 3 /* time to wait before closing agent fd */
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments();
static void send_packet();
static void print_val();
static void usage();
static void init_connection();

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 17

static void init_variables();
static void await_and_read_packet();
static void handle_packet();
static void do_get();
static void do_set();
static void issue_traps();
static void issue_one_trap();
static void issue_one_trape();
static void issue_std_traps();
static void issue_ent_traps();
static void issue_ent_trapse();
static void do_register();
static void dump_bfr();
static struct dpi_set_packet *addtoset();
extern unsigned long lookup_host();
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void check_arguments(const int argc, char *argvÝ});
static void send_packet(const char * packet);
static void print_val(const int index);
static void usage(const char *progname, const int exit_rc);
static void init_connection(void);
static void init_variables(void);
static void await_and_read_packet(void);
static void handle_packet(void);
static void do_get(void);
static void do_set(void);
static void issue_traps(void);
static void issue_one_trap(void);
static void issue_one_trape(void);
static void issue_std_traps(void);
static void issue_ent_traps(void);
static void issue_ent_trapse(void);
static void do_register(void);
static void dump_bfr(const char *buf, const int len);
static struct dpi_set_packet *addtoset(struct dpi_set_packet *data,

int stype);
extern unsigned long lookup_host(const char *hostname);
#endif /* _NO_PROTO */
#define OSTRING "hex01-04:"
#define DSTRING "Initial Display String"
#define COMMAND "None"
#define BUFSIZE 4096
#define TIMEOUT 3
#define PACKET_LEN(packet) (((unsigned char)*(packet)) * 256 + \

((unsigned char)*((packet) + 1)) + 2)
/* We have the following instances for OID.x variables */

/* 0 - table */
static long number = 0; /* 1 - a number */
static unsigned char *ostring = 0; /* 2 - octet string */
static int ostring_len = 0; /* and its length */
static unsigned char *objectID = 0; /* 3 - objectID */
static int objectID_len= 0; /* and its length */

/* 4 - some empty variable */
static unsigned long ipaddr = 0; /* 5 - ipaddress */
static unsigned long counter = 1; /* 6 - a counter */
static unsigned long gauge = 1; /* 7 - a gauge */
static unsigned long ticks = 1; /* 8 - time ticks */
static unsigned char *dstring = 0; /* 9 - display string */
static unsigned char *command = 0; /* 10 - command */
static char *DPI_varÝ} = {

"dpiSample",
"dpiSampleNumber",
"dpiSampleOctetString",
"dpiSampleObjectID",
"dpiSampleEmpty",
"dpiSampleInetAddress",
"dpiSampleCounter",

18 z/OS V1R4.0 CS: IP Programmer’s Reference

"dpiSampleGauge",
"dpiSampleTimeTicks",
"dpiSampleDisplayString",
"dpiSampleCommand"

};
static short int valid_typesÝ} = { /* SNMP_TYPEs accepted on SET */

-1, /* 0 do not check type */
SNMP_TYPE_NUMBER, /* 1 number */
SNMP_TYPE_STRING, /* 2 octet string */
SNMP_TYPE_OBJECT, /* 3 object identifier */
-1, /* SNMP_TYPE_EMPTY */ /* 4 do not check type */
SNMP_TYPE_INTERNET, /* 5 internet address */
SNMP_TYPE_COUNTER, /* 6 counter */
SNMP_TYPE_GAUGE, /* 7 gauge */
SNMP_TYPE_TICKS, /* 8 time ticks */
SNMP_TYPE_STRING, /* 9 display string */
SNMP_TYPE_STRING /* 10 command (display string) */

#define OID_COUNT_FOR_TRAPS 9
#define OID_COUNT 10
};
static char *packet = NULL; /* ptr to send packet. */
static char inbufÝBUFSIZE}; /* buffer for receive packets */
static int dpi_fd; /* fd for socket to DPI agent */
static short int dpi_port; /* DPI_port at agent */
static unsigned long dpi_ipaddress; /* IP address of DPI agent */
static char *dpi_hostname; /* hostname of DPI agent */
static char *dpi_userid; /* userid of DPI agent VM/MVS */
static char *var_gid; /* groupID received */
static char *var_oid; /* objectID received */
static int var_index; /* OID variable index */
static unsigned char var_type; /* SET value type */
static char *var_value; /* SET value */
static short int var_value_len; /* SET value length */
static int debug_lvl = 0; /* current debug level */
static int use_iucv = IUCV; /* optional use of AF_IUCV */
static int do_quit = FALSE;/* Quit in await loop */
static int trap_gtype = 0; /* trap generic type */
static int trap_stype = 0; /* trap specific type */
static char *trap_data = NULL;/* trap data */
static int do_trap = 0; /* switch for traps */
#define ONE_TRAP 1
#define ONE_TRAPE 2
#define STD_TRAPS 3
#define ENT_TRAPS 4
#define ENT_TRAPSE 5
#define ALL_TRAPS 6
#define MAX_TRAPE_DATA 10 /* data for extended trap */
static long trape_gtype = 6; /* trap generic type */
static long trape_stype = 11; /* trap specific type */
static char *trape_eprise = NULL; /* enterprise id */
static char *trape_dataÝMAX_TRAPE_DATA}; /* pointers to data values */
static int trape_datacnt; /* actual number of values */
#ifdef _NO_PROTO /* for classic K&R C */
main(argc, argv) /* main line */
int argc;
char *argvÝ};
#else /* _NO_PROTO */ /* for ANSI-C compiler */
main(const int argc, char *argvÝ}) /* main line */
#endif /* _NO_PROTO */
{

check_arguments(argc, argv); /* check callers arguments */
dpi_ipaddress = lookup_host(dpi_hostname); /* get ip address */
init_connection(); /* connect to specified agent */
init_variables(); /* initialize our variables */
if (do_trap) { /* we just need to do traps */

issue_traps(); /* issue the trap(s) */
sleep(WAIT_FOR_AGENT); /* sleep a bit, so agent can */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 19

close(dpi_fd); /* read data before we close */
exit(0); /* and that’s it */

} /* end if (do_trap) */
do_register(); /* register our objectIDs */
printf("%s ready and awaiting queries from agent\n",argvÝ0});
while (do_quit == FALSE) { /* forever until quit or error */

await_and_read_packet(); /* wait for next packet */
handle_packet(); /* handle it */
if (do_trap) issue_traps(); /* request to issue traps */

} /* while loop */
sleep(WAIT_FOR_AGENT); /* allow agent to read response */
printf("Quitting, %s set to: quit\n",DPI_varÝ10});
exit(2); /* sampleDisplayString == quit */

}
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_traps(void)
#endif /* _NO_PROTO */
{

switch (do_trap) { /* let’s see which one(s) */
case ONE_TRAP: /* only need to issue one trap */

issue_one_trap(); /* go issue the one trap */
break;

case ONE_TRAPE: /* only need to issue one trape */
issue_one_trape(); /* go issue the one trape */
break;

case STD_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
break;

case ENT_TRAPS: /* only need to issue ent traps */
issue_ent_traps(); /* enterprise specific traps */
break;

case ENT_TRAPSE: /* only need to issue ent trapse */
issue_ent_trapse(); /* enterprise specific trapse */
break;

case ALL_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
issue_ent_traps(); /* enterprise specific traps */
issue_ent_trapse(); /* enterprise specific trapse */
break;

default:
break;

} /* end switch (do_trap) */
do_trap = 0; /* reset do_trap switch */

}
#ifdef _NO_PROTO /* for classic K&R C */
static void await_and_read_packet() /* await packet from DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void await_and_read_packet(void)/* await packet from DPI agent */
#endif /* _NO_PROTO */
{

int len, rc, bytes_to_read, bytes_read = 0;
#ifdef OS2

int socksÝ5};
#else

fd_set read_mask;
#endif

struct timeval timeout;
#ifdef OS2

socksÝ0} = dpi_fd;
rc = select(socks, 1, 0, 0, -1L);

#else
FD_ZERO(&read_mask);
FD_SET(dpi_fd, &read_mask); /* wait for data */
rc = select(dpi_fd+1, &read_mask, NULL, NULL, NULL);

#endif

20 z/OS V1R4.0 CS: IP Programmer’s Reference

if (rc != 1) { /* exit on error */
DO_ERROR("await_and_read_packet: select");
close(dpi_fd);
exit(1);

}
#ifdef OS2

len = recv(dpi_fd, inbuf, 2, 0); /* read 2 bytes first */
#else

len = read(dpi_fd, inbuf, 2); /* read 2 bytes first */
#endif

if (len <= 0) { /* exit on error or EOF */
if (len < 0) DO_ERROR("await_and_read_packet: read");
else printf("Quitting, EOF received from DPI-agent\n");
close(dpi_fd);
exit(1);

}
bytes_to_read = (inbufÝ0} << 8) + inbufÝ1}; /* bytes to follow */
if (BUFSIZE < (bytes_to_read + 2)) { /* exit if too much */

printf("Quitting, packet larger than %d byte buffer\n",BUFSIZE);
close(dpi_fd);
exit(1);

}
while (bytes_to_read > 0) { /* while bytes to read */

#ifdef OS2
socksÝ0} = dpi_fd;
len = select(socks, 1, 0, 0, 3000L);

#else
timeout.tv_sec = 3; /* wait max 3 seconds */
timeout.tv_usec = 0;
FD_SET(dpi_fd, &read_mask); /* check for data */
len = select(dpi_fd+1, &read_mask, NULL, NULL, &timeout);

#endif
if (len == 1) { /* select returned OK */

#ifdef OS2
len = recv(dpi_fd, &inbufÝ2} + bytes_read, bytes_to_read, 0);

#else
len = read(dpi_fd, &inbufÝ2} + bytes_read, bytes_to_read);

#endif
} /* end if (len == 1) */
if (len <= 0) { /* exit on error or EOF */

if (len < 0) DO_ERROR("await_and_read_packet: read");
printf("Can’t read remainder of packet\n");
close(dpi_fd);
exit(1);

} else { /* count bytes_read */
bytes_read += len;
bytes_to_read -= len;

}
} /* while (bytes_to_read > 0) */

}
#ifdef _NO_PROTO /* for classic K&R C */
static void handle_packet() /* handle DPI packet from agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void handle_packet(void) /* handle DPI packet from agent */
#endif /* _NO_PROTO */
{

struct snmp_dpi_hdr *hdr;
if (debug_lvl > 2) {

printf("Received following SNMP-DPI packet:\n");
dump_bfr(inbuf, PACKET_LEN(inbuf));

}
hdr = pDPIpacket(inbuf); /* parse received packet */
if (hdr == 0) { /* ignore if can’t parse */

printf("Ignore received packet, could not parse it!\n");
return;

}
packet = NULL;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 21

var_type = 0;
var_oid = "";
var_gid = "";
switch (hdr->packet_type) {

/* extract pointers and/or data from specific packet types, */
/* such that we can use them independent of packet type. */
case SNMP_DPI_GET:

if (debug_lvl > 0) printf("SNMP_DPI_GET for ");
var_oid = hdr->packet_body.dpi_get->object_id;
break;

case SNMP_DPI_GET_NEXT:
if (debug_lvl > 0) printf("SNMP_DPI_GET_NEXT for ");
var_oid = hdr->packet_body.dpi_next->object_id;
var_gid = hdr->packet_body.dpi_next->group_id;
break;

case SNMP_DPI_SET:
if (debug_lvl > 0) printf("SNMP_DPI_SET for ");
var_value_len = hdr->packet_body.dpi_set->value_len;
var_value = hdr->packet_body.dpi_set->value;
var_oid = hdr->packet_body.dpi_set->object_id;
var_type = hdr->packet_body.dpi_set->type;
break;

default: /* Return a GEN_ERROR */
if (debug_lvl > 0) printf("Unexpected packet_type %d, genErr\n",

hdr->packet_type);
packet = mkDPIresponse(SNMP_GEN_ERR, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;
break;

} /* end switch(hdr->packet_type) */
if (debug_lvl > 0) printf("objectID: %s \n",var_oid);
if (strlen(var_oid) <= strlen(OID)) { /* not in our tree */

if (hdr->packet_type == SNMP_DPI_GET_NEXT) var_index = 0; /* OK */
else { /* cannot handle */

if (debug_lvl>0) printf("...Ignored %s, noSuchName\n",var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;

}
} else { /* Extract our variable index (from OID.index.instance) */

/* We handle any instance the same (we only have one instance) */
var_index = atoi(&var_oidÝstrlen(OID)});

}
if (debug_lvl > 1) {

printf("...The groupID=%s\n",var_gid);
printf("...Handle as if objectID=%s%d\n",OID,var_index);

}
switch (hdr->packet_type) {

case SNMP_DPI_GET:
do_get(); /* do a get to return response */
break;

case SNMP_DPI_GET_NEXT:
{ char toidÝ256}; /* space for temporary objectID */

var_index++; /* do a get for the next variable */
sprintf(toid,"%s%d",OID,var_index); /* construct objectID */
var_oid = toid; /* point to it */
do_get(); /* do a get to return response */

} break;
case SNMP_DPI_SET:

if (debug_lvl > 1) printf("...value_type=%d\n",var_type);
do_set(); /* set new value first */
if (packet) break; /* some error response was generated */
do_get(); /* do a get to return response */
break;

}

22 z/OS V1R4.0 CS: IP Programmer’s Reference

fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
}
#ifdef _NO_PROTO /* for classic K&R C */
static void do_get() /* handle SNMP_GET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_get(void) /* handle SNMP_GET request */
#endif /* _NO_PROTO */
{

struct dpi_set_packet *data = NULL;
switch (var_index) {
case 0: /* table, cannot be queried by itself */
printf("...Should not issue GET for table %s.0\n", OID);
break;
case 1: /* a number */
data = mkDPIset(var_oid,SNMP_TYPE_NUMBER,sizeof(number),&number);
break;
case 2: /* an octet_string (can have binary data) */
data = mkDPIset(var_oid,SNMP_TYPE_STRING,ostring_len,ostring);
break;
case 3: /* object id */
data = mkDPIset(var_oid,SNMP_TYPE_OBJECT,objectID_len,objectID);
break;
case 4: /* some empty variable */
data = mkDPIset(var_oid,SNMP_TYPE_EMPTY,0,NULL);
break;
case 5: /* internet address */
data = mkDPIset(var_oid,SNMP_TYPE_INTERNET,sizeof(ipaddr),&ipaddr);
break;
case 6: /* counter (unsigned) */
data =mkDPIset(var_oid,SNMP_TYPE_COUNTER,sizeof(counter),&counter);
break;
case 7: /* gauge (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_GAUGE,sizeof(gauge),&gauge);
break;
case 8: /* time ticks (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_TICKS,sizeof(ticks),&ticks);
break;
case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(dstring),dstring);
DO_ATOE(dstring);
break;
case 10: /* a command request (command is a display string) */
DO_ETOA(command);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(command),command);
DO_ATOE(command);
break;
default: /* Return a NoSuchName */
if (debug_lvl > 1)

printf("...GETÝNEXT} for %s, not found\n", var_oid);
break;

} /* end switch (var_index) */
if (data) {

if (debug_lvl > 0) {
printf("...Sending response oid: %s type: %d\n",

var_oid, data->type);
printf("......Current value: ");
print_val(var_index); /* prints \n at end */

}
packet = mkDPIresponse(SNMP_NO_ERROR,data);

} else { /* Could have been an error in mkDPIset though */
if (debug_lvl > 0) printf("...Sending response noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);

} /* end if (data) */
if (packet) send_packet(packet);

}
#ifdef _NO_PROTO /* for classic K&R C */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 23

static void do_set() /* handle SNMP_SET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_set(void) /* handle SNMP_SET request */
#endif /* _NO_PROTO */
{

unsigned long *ulp;
long *lp;

if (valid_typesÝvar_index} != var_type &&
valid_typesÝvar_index} != -1) {
printf("...Ignored set request with type %d, expect type %d,",

var_type, valid_typesÝvar_index});
printf(" Returning badValue\n");
packet = mkDPIresponse(SNMP_BAD_VALUE, NULL);
if (packet) send_packet(packet);
return;

}
switch (var_index) {
case 0: /* table, cannot set table. */
if (debug_lvl > 0) printf("...Ignored set TABLE, noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;
case 1: /* a number */
lp = (long *)var_value;
number = *lp;
break;
case 2: /* an octet_string (can have binary data) */
free(ostring);
ostring = (char *)malloc(var_value_len + 1);
bcopy(var_value, ostring, var_value_len);
ostring_len = var_value_len;
ostringÝvar_value_len} = ’\0’; /* so we can use it as a string */
break;
case 3: /* object id */
free(objectID);
objectID = (char *)malloc(var_value_len + 1);
bcopy(var_value, objectID, var_value_len);
objectID_len = var_value_len;
if (objectIDÝobjectID_len -1}) {

objectIDÝobjectID_len++} = ’\0’; /* a valid one needs a null */
if (debug_lvl > 0)

printf("...added a terminating null to objectID\n");
}
break;
case 4: /* an empty variable, cannot set */
if (debug_lvl > 0) printf("...Ignored set EMPTY, readOnly\n");
packet = mkDPIresponse(SNMP_READ_ONLY,NULL);
break;
case 5: /* Internet address */
ulp = (unsigned long *)var_value;
ipaddr = *ulp;
break;
case 6: /* counter (unsigned) */
ulp = (unsigned long *)var_value;
counter = *ulp;
break;
case 7: /* gauge (unsigned) */
ulp = (unsigned long *)var_value;
gauge = *ulp;
break;
case 8: /* time ticks (unsigned) */
ulp = (unsigned long *)var_value;
ticks = *ulp;
break;
case 9: /* a display_string (printable ascii only) */
free(dstring);
dstring = (char *)malloc(var_value_len + 1);
bcopy(var_value, dstring, var_value_len);

24 z/OS V1R4.0 CS: IP Programmer’s Reference

dstringÝvar_value_len} = ’\0’; /* so we can use it as a string */
DO_ATOE(dstring);
break;
case 10: /* a request to execute a command */
free(command);
command = (char *)malloc(var_value_len + 1);
bcopy(var_value, command, var_value_len);
commandÝvar_value_len} = ’\0’; /* so we can use it as a string */
DO_ATOE(command);
if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("std_traps",command) == 0) do_trap = STD_TRAPS;
else if (strcmp("ent_traps",command) == 0) do_trap = ENT_TRAPS;
else if (strcmp("ent_trapse",command) == 0) do_trap = ENT_TRAPSE;
else if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("quit",command) == 0) do_quit = TRUE;
else break;
if (debug_lvl > 0)

printf("...Action requested: %s set to: %s\n",
DPI_varÝ10}, command);

break;
default: /* NoSuchName */
if (debug_lvl > 0)

printf("...Ignored set for %s, noSuchName\n", var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;

} /* end switch (var_index) */
if (packet) send_packet(packet);

}
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_std_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_std_traps(void)
#endif /* _NO_PROTO */
{

trap_stype = 0;
trap_data = dpi_hostname;
for (trap_gtype=0; trap_gtype<6; trap_gtype++) {

issue_one_trap();
if (trap_gtype == 0) sleep(10); /* some managers purge cache */

}
}
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_traps(void)
#endif /* _NO_PROTO */
{

char temp_stringÝ256};
trap_gtype = 6;
for (trap_stype = 1; trap_stype < 10; trap_stype++) {

trap_data = temp_string;
switch (trap_stype) {
case 1 :

sprintf(temp_string,"%ld",number);
break;

case 2 :
sprintf(temp_string,"%s",ostring);
break;

case 3 :
trap_data = objectID;
break;

case 4 :
trap_data = "";
break;

case 5 :
trap_data = dpi_hostname;
break;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 25

case 6 :
sleep(1); /* give manager a break */
sprintf(temp_string,"%lu",counter);
break;

case 7 :
sprintf(temp_string,"%lu",gauge);
break;

case 8 :
sprintf(temp_string,"%lu",ticks);
break;

case 9 :
trap_data = dstring;
break;

} /* end switch (trap_stype) */
issue_one_trap();

}
}
/* issue a set of extended traps, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_trapse()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_trapse(void)
#endif /* _NO_PROTO */
{

int i, n;
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oidÝ256};
char *cp;
trape_gtype = 6;
trape_eprise = ENTERPRISE_OID;
for (n=11; n < (11+OID_COUNT_FOR_TRAPS); n++) {

data = 0;
trape_stype = n;
for (i=1; i<=(n-10); i++)

data = addtoset(data, i);
if (data == 0) {

printf("Could not make dpi_set_packet\n");
return;

}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}
}
/* issue one extended trap, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trape()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trape(void)
#endif /* _NO_PROTO */
{

struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
char oidÝ256};
char *cp;
int i;
for (i=0; i<trape_datacnt; i++) {

26 z/OS V1R4.0 CS: IP Programmer’s Reference

sprintf(oid,"%s2.%d",OID,i);
/* assume an octet_string (could have hex data) */
data = mkDPIlist(data, oid, SNMP_TYPE_STRING,

strlen(trape_dataÝi}), trape_dataÝi});
if (data == 0) {

printf("Could not make dpiset_packet\n");
} else if (debug_lvl > 0) {

printf("Preparing: Ýoid=%s} value: ", oid);
printf("’");
for (cp = trape_dataÝi}; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

}
}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trap()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trap(void)
#endif /* _NO_PROTO */
{

long int num; /* must be 4 bytes */
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oidÝ256};
char *cp;
switch (trap_gtype) {
/* all traps are handled more or less the same sofar. */
/* could put specific handling here if needed/wanted. */
case 0: /* simulate cold start */
case 1: /* simulate warm start */
case 4: /* simulate authentication failure */

strcpy(oid,"none");
break;

case 2: /* simulate link down */
case 3: /* simulate link up */

strcpy(oid,ifIndex);
num = 1;
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 5: /* simulate EGP neighbor loss */
strcpy(oid,egpNeighAddr);
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* simulate enterprise specific trap */
sprintf(oid,"%s%d.0",OID, trap_stype);
switch (trap_stype) {
case 1: /* a number */

num = strtol(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 2: /* an octet_string (could have hex data) */
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;

case 3: /* object id */
data = mkDPIset(oid,SNMP_TYPE_OBJECT,strlen(trap_data) + 1,

trap_data);
break;

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 27

case 4: /* an empty variable value */
data = mkDPIset(oid, SNMP_TYPE_EMPTY, 0, 0);
break;

case 5: /* internet address */
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* counter (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_COUNTER, sizeof(ulnum), &ulnum);
break;

case 7: /* gauge (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_GAUGE, sizeof(ulnum), &ulnum);
break;

case 8: /* time ticks (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_TICKS, sizeof(num), &ulnum);
break;

case 9: /* a display_string (ascii only) */
DO_ETOA(trap_data);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
DO_ATOE(trap_data);
break;

default: /* handle as string */
printf("Unknown specific trap type: %s, assume octet_string\n",

trap_stype);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;

} /* end switch (trap_stype) */
break;

default: /* unknown trap */
printf("Unknown general trap type: %s\n", trap_gtype);
return;
break;

} /* end switch (trap_gtype) */
packet = mkDPItrap(trap_gtype,trap_stype,data);
if ((debug_lvl > 0) && (packet)) {

printf("sending trap packet: %u %u Ýoid=%s} value: ",
trap_gtype, trap_stype, oid);

if (trap_stype == 2) {
printf("’");
for (cp = trap_data; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

} else printf("%s\n", trap_data);
}
if (packet) send_packet(packet);
else printf("Could not make trap packet\n");

}
#ifdef _NO_PROTO /* for classic K&R C */
static void send_packet(packet) /* DPI packet to agent */
char *packet;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void send_packet(const char *packet) /* DPI packet to agent */
#endif /* _NO_PROTO */
{

int rc;
if (debug_lvl > 2) {

printf("...Sending DPI packet:\n");
dump_bfr(packet, PACKET_LEN(packet));

}
#ifdef OS2

rc = send(dpi_fd,packet,PACKET_LEN(packet),0);
#else
rc = write(dpi_fd,(unsigned char *)packet,PACKET_LEN(packet));
#endif

28 z/OS V1R4.0 CS: IP Programmer’s Reference

if (rc != PACKET_LEN(packet)) DO_ERROR("send_packet: write");
/* no need to free packet (static buffer in mkDPI.... routine) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_register() /* register our objectIDs with agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_register(void) /* register our objectIDs with agent */
#endif /* _NO_PROTO */
{

int i, rc;
char toidÝ256};
if (debug_lvl > 0) printf("Registering variables:\n");
for (i=1; i<=OID_COUNT; i++) {

sprintf(toid,"%s%d.",OID,i);
packet = mkDPIregister(toid);

#ifdef OS2
rc = send(dpi_fd, packet, PACKET_LEN(packet),0);

#else
rc = write(dpi_fd, packet, PACKET_LEN(packet));

#endif
if (rc <= 0) {

DO_ERROR("do_register: write");
printf("Quitting, unsuccessful register for %s\n",toid);
close(dpi_fd);
exit(1);

}
if (debug_lvl > 0) {

printf("...Registered: %-25s oid: %s\n",DPI_varÝi},toid);
printf("......Initial value: ");
print_val(i); /* prints \n at end */

}
}

}
/* add specified variable to list of variable in the dpi_set_packet
*/
#ifdef _NO_PROTO /* for classic K&R C */
struct dpi_set_packet *addtoset(data, stype)
struct dpi_set_packet *data;
int stype;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
struct dpi_set_packet *addtoset(struct dpi_set_packet *data, int stype)
#endif /* _NO_PROTO */
{

char var_oidÝ256};
sprintf(var_oid,"%s%d.0",OID, stype);
switch (stype) {
case 1: /* a number */

data = mkDPIlist(data, var_oid, SNMP_TYPE_NUMBER,
sizeof(number), &number);

break;
case 2: /* an octet_string (can have binary data) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

ostring_len, ostring);
break;
case 3: /* object id */
data = mkDPIlist(data, var_oid, SNMP_TYPE_OBJECT,

objectID_len, objectID);
break;
case 4: /* some empty variable */
data = mkDPIlist(data, var_oid, SNMP_TYPE_EMPTY, 0, NULL);
break;
case 5: /* internet address */
data = mkDPIlist(data, var_oid, SNMP_TYPE_INTERNET,

sizeof(ipaddr), &ipaddr);
break;
case 6: /* counter (unsigned) */
data =mkDPIlist(data, var_oid, SNMP_TYPE_COUNTER,

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 29

sizeof(counter), &counter);
break;
case 7: /* gauge (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_GAUGE,

sizeof(gauge), &gauge);
break;
case 8: /* time ticks (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_TICKS,

sizeof(ticks), &ticks);
break;
case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

strlen(dstring), dstring);
DO_ATOE(dstring);
break;
} /* end switch (stype) */
return(data);

}
#ifdef _NO_PROTO /* for classic K&R C */
static void print_val(index)
int index;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void print_val(const int index)
#endif /* _NO_PROTO */
{

char *cp;
struct in_addr temp_ipaddr;
switch (index) {
case 1 :

printf("%ld\n",number);
break;

case 2 :
printf("’");
for (cp = ostring; cp < ostring + ostring_len; cp++)

printf("%2.2x",*cp);
printf("’H\n");
break;

case 3 :
printf("%*s\n", objectID_len, objectID);
break;

case 4 :
printf("no value (EMPTY)\n");
break;

case 5 :
temp_ipaddr.s_addr = ipaddr;
printf("%s\n",inet_ntoa(temp_ipaddr));

/* This worked on VM, MVS and AIX, but not on OS/2
* printf("%d.%d.%d.%d\n", (ipaddr >> 24), ((ipaddr << 8) >> 24),
* ((ipaddr << 16) >> 24), ((ipaddr << 24) >> 24));
*/

break;
case 6 :

printf("%lu\n",counter);
break;

case 7 :
printf("%lu\n",gauge);
break;

case 8 :
printf("%lu\n",ticks);
break;

case 9 :
printf("%s\n",dstring);
break;

case 10 :
printf("%s\n",command);
break;

30 z/OS V1R4.0 CS: IP Programmer’s Reference

} /* end switch(index) */
}
#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments(argc, argv) /* check arguments */
int argc;
char *argvÝ};
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void check_arguments(const int argc, char *argvÝ})
#endif /* _NO_PROTO */
{

char *hname, *cname;
int i, j;
dpi_userid = hname = cname = NULL;
for (i=1; argc > i; i++) {

if (strcmp(argvÝi},"-d") == 0) {
i++;
if (argc > i) {

debug_lvl = atoi(argvÝi});
if (debug_lvl >= 5) {

DPIdebug(1);
}

}
} else if (strcmp(argvÝi},"-trap") == 0) {

if (argc > i+3) {
trap_gtype = atoi(argvÝi+1});
trap_stype = atoi(argvÝi+2});
trap_data = argvÝi+3};
i = i + 3;
do_trap = ONE_TRAP;

} else usage(argvÝ0}, 1);
} else if (strcmp(argvÝi},"-trape") == 0) {

if (argc > i+4) {
trape_gtype = strtoul(argvÝi+1},(char**)0,10);
trape_stype = strtoul(argvÝi+2},(char**)0,10);
trape_eprise = argvÝi+3};
for (i = i + 4, j = 0;

(argc > i) && (j < MAX_TRAPE_DATA);
i++, j++) {
trape_dataÝj} = argvÝi};

}
trape_datacnt = j;
do_trap = ONE_TRAPE;
break; /* -trape must be last option */

} else usage(argvÝ0}, 1);
} else if (strcmp(argvÝi},"-all_traps") == 0) {

do_trap = ALL_TRAPS;
} else if (strcmp(argvÝi},"-std_traps") == 0) {

do_trap = STD_TRAPS;
} else if (strcmp(argvÝi},"-ent_traps") == 0) {

do_trap = ENT_TRAPS;
} else if (strcmp(argvÝi},"-ent_trapse") == 0) {

do_trap = ENT_TRAPSE;
#if defined(VM) || defined(MVS)

} else if (strcmp(argvÝi},"-inet") == 0) {
use_iucv = 0;

} else if (strcmp(argvÝi},"-iucv") == 0) {
use_iucv = TRUE;

} else if (strcmp(argvÝi},"-u") == 0) {
use_iucv = TRUE; /* -u implies -iucv */
i++;
if (argc > i) {

dpi_userid = argvÝi};
}

#endif
} else if (strcmp(argvÝi},"?") == 0) {

usage(argvÝ0}, 0);
} else {

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 31

if (hname == NULL) hname = argvÝi};
else if (cname == NULL) cname = argvÝi};
else usage(argvÝ0}, 1);

}
}
if (hname == NULL) hname = LOOPBACK; /* use default */
if (cname == NULL) cname = PUBLIC_COMMUNITY_NAME; /* use default */

#if defined(VM) || defined(MVS)
if (dpi_userid == NULL) dpi_userid = SNMPAGENTUSERID;
if (debug_lvl > 2)

printf("hname=%s, cname=%s, userid=%s\n",hname,cname,dpi_userid);
#else

if (debug_lvl > 2)
printf("hname=%s, cname=%s\n",hname,cname);

#endif
if (use_iucv != TRUE) {

DO_ETOA(cname); /* for VM or MVS */
dpi_port = query_DPI_port(hname,cname);
DO_ATOE(cname); /* for VM or MVS */
if (dpi_port == -1) {

printf("No response from agent at %s(%s)\n",hname,cname);
exit(1);

}
} else dpi_port == -1;
dpi_hostname = hname;

}
#ifdef _NO_PROTO /* for classic K&R C */
static void usage(pname, exit_rc)
char *pname;
int exit_rc;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void usage(const char *pname, const int exit_rc)
#endif /* _NO_PROTO */
{

printf("Usage: %s Ý-d debug_lvl} Ý-trap g_type s_type data}", pname);
printf(" Ý-all_traps}\n");
printf("%*sÝ-trape g_type s_type enterprise data1 data2 .. datan}\n",

strlen(pname)+8,"");
printf("%*sÝ-std_traps} Ý-ent_traps} Ý-ent_trapse}\n",

strlen(pname)+8,"");
#if defined(VM) || defined(MVS)

printf("%*sÝ-iucv} Ý-u agent_userid}\n",strlen(pname)+8, "");
printf("%*s", strlen(pname)+8, "");
printf("Ý-inet} Ýagent_hostname Ýcommunity_name}}\n");
printf("default: -d 0 -iucv -u %s\n", SNMPAGENTUSERID);
printf(" -inet %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#else
printf("%*sÝagent_hostname Ýcommunity_name}}\n",strlen(pname)+8,"");
printf("default: -d 0 %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#endif
exit(exit_rc);

}
#ifdef _NO_PROTO /* for classic K&R C */
static void init_variables() /* initialize our variables */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_variables(void) /* initialize our variables */
#endif /* _NO_PROTO */
{

char ch, *cp;
ostring = (char *)malloc(strlen(OSTRING) + 4 + 1);
bcopy(OSTRING,ostring,strlen(OSTRING));
ostring_len = strlen(OSTRING);
for (ch=1;ch<5;ch++) /* add hex data 0x01020304 */

ostringÝostring_len++} = ch;
ostringÝostring_len} = ’\0’; /* so we can use it as a string */
objectID = (char *)malloc(strlen(OID));
objectID_len = strlen(OID);

32 z/OS V1R4.0 CS: IP Programmer’s Reference

bcopy(OID,objectID,strlen(OID));
if (objectIDÝobjectID_len - 1} == ’.’) /* if trailing dot, */

objectIDÝobjectID_len - 1} = ’\0’; /* remove it */
else objectID_len++; /* length includes null */
dstring = (char *)malloc(strlen(DSTRING)+1);
bcopy(DSTRING,dstring,strlen(DSTRING)+1);
command = (char *)malloc(strlen(COMMAND)+1);
bcopy(COMMAND,command,strlen(COMMAND)+1);
ipaddr = dpi_ipaddress;

}
#ifdef _NO_PROTO /* for classic K&R C */
static void init_connection() /* connect to the DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_connection(void) /* connect to the DPI agent */
#endif /* _NO_PROTO */
{

int rc;
int sasize; /* size of socket structure */
struct sockaddr_in sin; /* socket address AF_INET */
struct sockaddr *sa; /* socket address general */

#if defined(VM) || defined (MVS)
struct sockaddr_iucv siu; /* socket address AF_IUCV */
if (use_iucv == TRUE) {

printf("Connecting to %s userid %s (TCP, AF_IUCV)\n",
dpi_hostname,dpi_userid); /* @P1C*/

bzero(&siu,sizeof(siu));
siu.siucv_family = AF_IUCV;
siu.siucv_addr = 0; /* @P1C*/
siu.siucv_port = 0; /* @P1C*/
memset(siu.siucv_nodeid, ’ ’, sizeof(siu.siucv_nodeid));
memset(siu.siucv_userid, ’ ’, sizeof(siu.siucv_userid));
memset(siu.siucv_name, ’ ’, sizeof(siu.siucv_name));
bcopy(dpi_userid, siu.siucv_userid, min(8,strlen(dpi_userid)));
bcopy(SNMPIUCVNAME, siu.siucv_name, min(8,strlen(SNMPIUCVNAME)));
dpi_fd = socket(AF_IUCV, SOCK_STREAM, 0);
sa = (struct sockaddr *) &siu;
sasize = sizeof(struct sockaddr_iucv);

} else {
#endif

printf("Connecting to %s DPI_port %d (TCP, AF_INET)\n",
dpi_hostname,dpi_port);

bzero(&sin,sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(dpi_port);
sin.sin_addr.s_addr = dpi_ipaddress;
dpi_fd = socket(AF_INET, SOCK_STREAM, 0);
sa = (struct sockaddr *) &sin;
sasize = sizeof(struct sockaddr_in);

#if defined(VM) || defined (MVS)
}

#endif
if (dpi_fd < 0) { /* exit on error */

DO_ERROR("init_connection: socket");
exit(1);

}
rc = connect(dpi_fd, sa, sasize); /* connect to agent */
if (rc != 0) { /* exit on error */

DO_ERROR("init_connection: connect");
close(dpi_fd);
exit(1);

}
}
#ifdef _NO_PROTO /* for classic K&R C */
static void dump_bfr(buf, len) /* hex dump buffer */
char *buf;
int len;
#else /* _NO_PROTO */ /* for ANSI-C compiler */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 33

static void dump_bfr(const char *buf, const int len)
#endif /* _NO_PROTO */
{

register int i;
if (len == 0) printf(" empty buffer\n"); /* buffer is empty */
for (i=0;i<len;i++) { /* loop through buffer */

if ((i&15) == 0) printf(" "); /* indent new line */
printf("%2.2x",(unsigned char)bufÝi});/* hex print one byte */
if ((i&15) == 15) printf("\n"); /* nl every 16 bytes */
else if ((i&3) == 3) printf(" "); /* space every 4 bytes */

}
if (i&15) printf("\n"); /* always end with nl */

}

34 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 3. SNMP agent Distributed Protocol Interface version
2.0

The simple network management protocol (SNMP) agent Distributed Protocol
Interface (DPI) permits you to dynamically add, delete, or replace management
variables in the local management information base (MIB). The SNMP DPI protocol
is also supported with the SNMP agent on OS/2®, VM, and AIX®. This makes it
easier to port subagents between those platforms and z/OS, as well as connect
agents and subagents across these platforms.

The SNMP agent DPI Application Programming Interface (API) is for the DPI
subagent programmer.

The following RFCs are related to SNMP and will be helpful when you are
programming an SNMP API:
v RFC 1592 is the SNMP DPI 2.0 RFC.
v RFC 1901 through RFC 1908 are the SNMP Version 2 RFCs.

The primary goal of RFC 1592 is to specify the SNMP DPI. This is a protocol by
which subagents can exchange SNMP related information with an agent.

To provide an environment that is generally platform independent, RFC 1592
strongly suggests that you also define a DPI API. There is a sample DPI API
available in the RFC. The document describes the same sample API as the IBM
supported DPI Version 2.0 API. See “A DPI subagent example” on page 100.

SNMP agents and subagents
SNMP agents are primarily responsible for responding to SNMP operation requests.
An operation request can originate from any entity that supports the management
portion of the SNMP protocol. An example of this is z/OS UNIX SNMP command,
osnmp, shipped with this version of TCP/IP. Examples of SNMP operations are
GET, GETNEXT, and SET. An operation is performed on an MIB object.

A subagent extends the set of MIB objects provided by the SNMP agent. With the
subagent, you define MIB objects useful in your own environment and register them
with the SNMP agent.

When the agent receives a request for an MIB object, it passes the request to the
subagent. The subagent then returns a response to the agent. The agent creates
an SNMP response packet and sends the response to the remote network
management station that initiated the request. The existence of the subagent is
transparent to the network management station.

To allow the subagents to perform these functions, the agent provides for subagent
connections through:

v A TCP connection

v An AF_UNIX streams connection

For the TCP connections, the agent binds to an arbitrarily chosen TCP port and
listens for connection requests. A well-known port is not used. Every invocation of
the SNMP agent could potentially use a different TCP port.

© Copyright IBM Corp. 1989, 2002 35

For UNIX streams connections, the agent is within the same machine. AF_UNIX
connections should be used if possible, because they do not pass into TCP/IP, but
flow only within UNIX System Services and hence require fewer system resources.

A DPI SNMP Subagent does not have to directly retrieve a dpiMIB object or
objects, but instead uses either DPIconnect_to_agent_TCP() or
DPIconnect_to_agent_UNIXstream(). DPIconnect_to_agent_TCP automatically
retrieves the object dpiPortForTCP from the dpiMIB through an SNMP agent.
DPIconnect_to_agent_TCP then establishes an AF_INET TCP socket connection
with the SNMP agent.

The query_DPI_port() function issued in Version 1.1 is implicitly run by the
DPIconnect_to_agent_TCP() function. The DPI subagent programmer would
normally use the DPIconnect_to_agent_TCP() function to connect to the agent, and
hence does not need to explicitly retrieve the value of the DPI TCP port.

Conversely, DPIconnect_to_agent_UNIXstream retrieves the value of the object
dpiPathNameForUnixStream from the dpiMIB to establish an AF_UNIX connection
with the SNMP agent.

After a successful connection to the SNMP agent the subagent registers the MIB
trees for the set of variables it supports with the SNMP agent. When all variable
classes are registered, the subagent waits for requests from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent’s security product resource name for the connection to be accepted. Refer to
the SNMP chapter in the z/OS Communications Server: IP Configuration Guide for
more information about security product access between subagents and the z/OS
Communications Server SNMP agent.

DPI agent requests
The SNMP agent can initiate several DPI requests:
v CLOSE
v COMMIT
v GET
v GETBULK
v GETNEXT
v SET
v UNDO
v UNREGISTER

The GET, GETNEXT, and SET requests correspond to the SNMP requests that a
network management station can make. The subagent responds to a request with a
response packet. The response packet can be created using the mkDPIresponse()
library routine, which is part of the DPI API library.

The GETBULK requests are translated into multiple GETNEXT requests by the
agent. According to RFC 1592, a subagent can request that the GETBULK be
passed to it, but the z/OS version of DPI does not yet support that request.

The COMMIT, UNDO, UNREGISTER, and CLOSE are specific SNMP DPI
requests.

36 z/OS V1R4.0 CS: IP Programmer’s Reference

The subagent normally responds to a request with a RESPONSE packet. For the
CLOSE and UNREGISTER request, the subagent does not need to send a
RESPONSE.

Related information
v “GETNEXT processing” on page 47
v “UNREGISTER request” on page 48
v “TRAP request” on page 48
v “CLOSE request” on page 49
v “Overview of subagent processing” on page 100
v “Connecting to the agent” on page 102
v “Registering a subtree with the agent” on page 105
v “Processing requests from the agent” on page 106
v “Processing a GET request” on page 109
v “Processing a SET/COMMIT/UNDO request” on page 116

SNMP DPI version 2.0 library
z/OS CS provides the following DPI library routines:

Table 1. Components of DPI version 2.0

Name Contents Location

snmp_dpi.h header file /usr/lpp/tcpip/snmp/include

snmp_lDPI.o

snmp_mDPI.o

snmp_qDPI.o

v z/OS UNIX System Services
object files

v DPI Version 2.0 library
functions

/usr/lpp/tcpip/snmp/build/libdpi20

dpi_mvs_sample.c SNMP DPI Version 2.0 C sample
source

/usr/lpp/tcpip/samples

dpiSimpl.mi2 SNMP DPI Version 2.0 sample
MIB definitions

/usr/lpp/tcpip/samples

SNMP DPI version 2.0 API
DPI Version 2.0 is intended for use with UNIX System Services sockets and is not
for use with other socket libraries. A DPI subagent must include the snmp_dpi.h
header in any C part that intends to use DPI. The Hierarchical File System (HFS)
path for snmp_dpi.h is /usr/lpp/tcpip/snmp/include. By default, when you include the
snmp_dpi.h include file, you will be exposed to the DPI Version 2.0 API. For a list of
the functions provided, read more about the “The snmp_dpi.h include file” on page
99. This is the recommended use of the SNMP DPI API.

When you prelink your object code into an executable file, you must use the DPI
Version 2.0 functions as provided in the snmp_lDPI.o, snmp_mDPI.o, snmp_qDPI.o
object files in /usr/lpp/tcpip/snmp/build/libdpi20.

Notes:

1. The object files are only located in UNIX System Services HFS. HFS files can
be accessed from JCL using the path parameter on an explicit DD definition.

2. Together the snmp_dpi.h include file and the dpi_mvs_sample.c file comprise an
example of the DPI Version 2.0 API.

3. Debugging information (resulting from the DPIdebug function) is routed to
SYSLOGD. Ensure the SYSLOG daemon is active.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 37

4. Compile your subagent code using the DEF(MVS) compiler option.

5. Waiting for a DPI packet depends on the platform and how the chosen transport
protocol is implemented. In addition, some subagents want to control the
sending of and waiting for packets themselves, because they might need to be
driven by other interrupts as well.

6. There is a set of DPI transport-related functions that are implemented on all
platforms to hide the platform-dependent issues for those subagents that do not
need detailed control for the transport themselves.

For more information about SNMP, refer to the z/OS Communications Server: IP
Configuration Reference or the z/OS Communications Server: IP System
Administrator’s Commands.

Compiling and linking
DPI Version 2.0 is installed in HFS only. You can build a subagent for either the
UNIX System Services shell (using HFS and c89) or MVS (using JCL).

Refer to the documentation provided by your C compiler for exact details of building
a C application. The information provided in the following sections is intended as
general guidance.

From a UNIX System Services environment
Use c89 to compile a DPI subagent under the UNIX System Services shell. Every C
file using DPI functions must include the DPI header file (snmp_dpi.h) from
/usr/lpp/tcpip/snmp/include. Also include the three DPI library object files
(snmp_qDPI.o, snmp_lDPI.o, and snmp_mDPI.o) from
/usr/lpp/tcpip/snmp/build/libdpi20.

The following is an example of how c89 is called to compile and build
dpi_mvs_sample.c:
c89 -o dpi_mvs_sample -I /usr/lpp/tcpip/snmp/include \
/usr/lpp/tcpip/samples/dpi_mvs_sample.c \
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o\
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o\
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o

Use the - I option to add the HFS directory where snmp_dpi.h resides to the
compiler include search path.

From an MVS environment

C programs that use DPI must:

v Compile with the longname compiler option

v Include snmp_dpi.h from /usr/lpp/tcpip/snmp/include

Add #include to the source code. You must inform the compiler that
/usr/lpp/tcpip/snmp/include should be searched for include files. Use either a
SYSLIB DD with a PATH parameter pointing to the HFS directory, or use the
SEARCH compiler parameter.

Prelink DPI subagent to resolve longnames. In the prelink JCL, define three DDs
pointing to each DPI object file, and then include each, such as:

38 z/OS V1R4.0 CS: IP Programmer’s Reference

DPI1 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o’
DPI2 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o’
DPI3 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o’

INCLUDE DPI1
INCLUDE DPI2
INCLUDE DPI3

Then, linkedit the prelink output as usual.

DPI version 1.x base code considerations
Use the DPI Version 1.1 API as described in Chapter 2, “SNMP agent Distributed
Protocol Interface version 1.1” on page 3.

The DPI Version 2.0 API provided with z/OS is for UNIX System Services sockets
use only. Earlier versions of DPI were supported on C sockets.

See “Migrating your SNMP DPI subagent to version 2.0” for more detail about the
changes that you must make to your DPI Version 1.x source.

If you want to convert to DPI Version 2.0, which prepares you also for SNMP
Version 2, you must make changes to your code.

You can keep your existing DPI Version 1.1 subagent and communicate with a
DPI-capable agent that supports DPI Version 1.1 in addition to DPI Version 2.0. For
example, the z/OS SNMP agent provides support for multiple versions of DPI,
including Version 1.0, Version 1.1, and Version 2.0.

SNMP DPI API version 1.1 considerations
The information presented in this section must be understood as guidelines and not
exact procedures. Your specific implementation will vary from the guidelines
presented.

Migrating your SNMP DPI subagent to version 2.0
When you want to change your DPI Version 1.x-based subagent code to the DPI
Version 2.0 level, use these guidelines for the required actions and the
recommended actions.

Required actions
The following actions are required to migrate SNMP DPI subagent to Version 2.0:

v Add an mkDPIopen() call and send the created packet to the agent. This opens
your DPI connection with the agent. Wait for the response and ensure that the
open is accepted. You need to pass a subagent ID (object identifier), which must
be a unique ASN.1 OID.

See “The mkDPIopen() function” on page 59 for more information.

v Change your mkDPIregister() calls and pass the parameters according to the
new function prototype. You must also expect a RESPONSE to the REGISTER
request.

See “The mkDPIregister() function” on page 61 for more information.

v Change mkDPIset() and mkDPIlist() calls to the new mkDPIset() call. Basically all
mkDPIset() calls are now of the DPI Version 1.1 mkDPIlist() form.

See “The mkDPIset() function” on page 65 for more information.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 39

v Change mkDPItrap() and mkDPItrape() calls to the new mkDPItrap() call.
Basically all mkDPItrap() calls are now of the DPI Version 1.1 mkDPItrape() form.

See “The mkDPItrap() function” on page 67 for more information.

v Add code to recognize DPI RESPONSE packets, which should be expected as a
result of OPEN, REGISTER, and UNREGISTER requests.

v Add code to expect and handle the DPI UNREGISTER packet from the agent. It
might send such packets if an error occurs or if a higher priority subagent
registers the same subtree as you have registered.

v Add code to unregister your subtrees and close the DPI connection when you
want to terminate the subagent.

See “The mkDPIunregister() function” on page 69 and “The mkDPIclose()
function” on page 58 for more information.

v Change your code to use the new SNMP Version 2 error codes as defined in the
snmp_dpi.h include file.

v When migrating DPI Version 1.1 subagents to DPI Version 2.0, remove the
include for manifest.h.

v Change your code that handles a GET request. It should return a varBind with
SNMP_TYPE_noSuchObject value or SNMP_TYPE_noSuchInstance value
instead of an error SNMP_ERROR_noSuchName if the object or the instance do
not exist. This is not considered an error any more. Therefore, you should return
an SNMP_ERROR_noError with an error index of 0.

Note: A varBind (variable binding) is the group ID, instance ID, type, length, and
value that completely describes a variable in the MIB.

v Change your code that handles a GETNEXT request. It should return a varBind
with SNMP_TYPE_endOfMibView value instead of an error
SNMP_ERROR_noSuchName if you reach the end of your MIB or subtree. This
is not considered an error any more. Therefore, you should return an
SNMP_ERROR_noError with an error index of 0.

v Change your code that handles SET requests to follow the two-phase
SET/COMMIT scheme as described in “SET processing” on page 45.

See the sample handling of SET/COMMIT/UNDO in “Processing a
SET/COMMIT/UNDO request” on page 116.

Recommended actions
The following actions are recommended:

v Do not refer to the object ID pointer (object_p) in the snmp_dpi_xxxx_packet
structures any more. Instead start using the group_p and instance_p pointers.
The object_p pointer might be removed in a future version of the DPI API.

v Check “Transport-related DPI API functions” on page 71 to see if you want to use
those functions instead of using your own code for those functions.

v Consider using more than one varBind per DPI packet. You can specify this on
the REGISTER request. You must then be prepared to handle multiple varBinds
per DPI packet. The varBinds are chained through the various
snmp_dpi_xxxx_packet structures.

See “The mkDPIopen() function” on page 59 for more information.

v Consider specifying a timeout when you issue a DPI OPEN or DPI REGISTER.

See“The mkDPIopen() function” on page 59 and “The mkDPIregister() function”
on page 61 for more information.

v Ensure SYSLOGD is active. The result of using DPIdebug is routed to
SYSLOGD. For information on how to configure SYSLOGD, refer to the z/OS
Communications Server: IP Configuration Reference.

40 z/OS V1R4.0 CS: IP Programmer’s Reference

DPI Version 2.0 recognizes mkDPIlist; however, Version 2.0 subagents should use
mkDPIset instead.

Name changes
A number of field names in the snmp_dpi_xxxx_packet structures have changed so
that the names are now more consistent throughout the DPI code.

The new names indicate if the value is a pointer (_p) or a union (_u). The names
that have changed and that affect the subagent code are listed in the table below.

Old name New name Data structure (XXXX)

group_id group_p getnext
object_id object_p get, getnext, set
value value_p set
type value_type set
next next_p set
enterprise enterprise_p trap
packet_body data_u dpi_hdr
dpi_get get_p hdr (packet_body)
dpi_getnext next_p hdr (packet_body)
dpi_set set_p hdr (packet_body)
dpi_trap trap_p hdr (packet_body)

There is no clean approach to make this change transparent. You probably will
need to change the names in your code. You could try a simple set of defines like:
#define packet_body data_u
#define dpi_get get_p
#define dpi_set set_p
#define dpi_next next_p
#define dpi_response resp_p
#define dpi_trap trap_p
#define group_id group_p
#define object_id object_p
#define value value_p
#define type value_type
#define next next_p
#define enterprise enterprise_p

If the names conflict with other definitions, change your code.

Subagent programming concepts
When implementing a subagent, use the DPI Version 2 approach and keep the
following in mind:

v Use the SNMP Version 2 error codes only, even though there are definitions for
the SNMP Version 1 error codes.

v Implement the SET, COMMIT, UNDO processing properly.

v Use the SNMP Version 2 approach for GET requests, and pass back
noSuchInstance value or noSuchObject value if appropriate. Continue to process
all remaining varBinds.

More than one varBind can be specified in the SNMP PDU for the requested
operation. For example, using the SNMP network manager, a user can request
the retrieval of multiple objects in the same request (GET or GETNEXT). The
varBind portion of the PDU sent would include multiple object identifiers (OIDs).
The subagent limitations are passed to the agent through the max_varBinds

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 41

parm on the mkDPIopen call. When the subagent receives a request from the
agent, it needs to handle multiple OIDs per request if it specified a max_varBinds
value other than 1.

v Use the SNMP Version 2 approach for GETNEXT, and pass back endOfMibView
value if appropriate. Continue to process all remaining varBinds.

v Specify the timeout period in the OPEN and REGISTER packets, when you are
processing a request from the agent (GET, GETNEXT, SET, COMMIT, or UNDO).

If you fail to respond within the timeout period, the agent will probably close your
DPI connection and discard your RESPONSE packet if it comes in later. If you
can detect that the response is not going to be received in the time period, then
you might decide to stop the request and return an SNMP_ERROR_genErr in the
RESPONSE.

v Issue an SNMP DPI ARE_YOU_THERE request periodically to ensure that the
agent is still connected and still knows about you.

v OS/2 runs on an ASCII based machine. However, when you are running a
subagent on an EBCDIC based machine and you use the (default) native
character set, all OID strings and all variable values of type
OBJECT_IDENTIFIER or DisplayString objects that are known by the agent (in
its compiled MIB) will be passed to you in EBCDIC format. OID strings include
the group ID, instance ID, enterprise ID, and subagent ID. You should structure
your response with the EBCDIC format.

v If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the connection.

v The DisplayString is only a textual convention. In the SNMP PDU (SNMP
packet), the type is an OCTET_STRING.

When the type is OCTET_STRING, it is not clear if this is a DisplayString or any
arbitrary data. This means that the agent can only know about an object being a
DisplayString if the object is included in some sort of a compiled MIB. If it is, the
agent will use SNMP_TYPE_DisplayString in the type field of the varBind in a
DPI SET packet. When you send a DisplayString in a RESPONSE packet, the
agent will handle it as such.

Related information
“A DPI subagent example” on page 100

Specifying the SNMP DPI API
The following sections describe each type of DPI processing in this order:

v Connect processing

v OPEN request

v REGISTER request

v GET, SET, GETNEXT, GETBULK, TRAP, and ARE_YOU_THERE processing

v UNREGISTER request

v CLOSE request

Connect processing
There are various connect functions that allow connections through either TCP or
UNIXstream. Determine which is appropriate for you by evaluating whether you are
connecting to the same machine or a different machine. If the agent and the
subagent are using the same machine, use the UNIXstream connection for better

42 z/OS V1R4.0 CS: IP Programmer’s Reference

performance. If the agent and the subagent are using different machines, you must
use the TCP connection. There are two connect processing parameters:

v Hostname—name or the IP address of the agent

v Community name—password that allows the DPI connect function to obtain the
port (for TCP) or pathname (for UNIX) that allows the socket connect to occur.

Related information
“Connecting to the agent” on page 102

OPEN request
Next, the DPI subagent must open a connection with the agent. To do so, it must
send a DPI OPEN packet in which these parameters must be specified:

v The maximum timeout value in seconds. The agent is requested to wait this long
for a response to any request for an object being handled by this subagent.

The agent can have an absolute maximum timeout value which will be used if
the subagent asks for too large a timeout value. A value of 0 can be used to
indicate that the agent default timeout value should be used. A subagent is
advised to use a reasonably short interval of a few seconds or so. If a specific
subtree needs longer time, a specific REGISTER can be done for that subtree
with a longer timeout value.

v The maximum number of varBinds that the subagent is prepared to handle per
DPI packet. Specifying 1 would result in DPI Version 1 behavior of one varBind
per DPI packet that the agent sends to the subagent. A value of 0 means the
agent will try to combine up to as many varBinds as are present in the SNMP
packet that belongs to the same subtree.

v The character set you want to use. The default 0 value is the native character set
of the machine platform where the agent runs. Because the subagent and agent
normally run on the same system or platform, use the native character set, which
is EBCDIC on MVS.

If your platform is EBCDIC-based, using the native character set of EBCDIC
makes it easy to recognize the string representations of the fields, such as the
group ID and instance ID. At the same time, the agent translates the value from
ASCII NVT to EBCDIC and vice versa for objects that it knows from a compiled
MIB to have a textual convention of DisplayString. This fact cannot be
determined from the SNMP PDU encoding because, in the PDU, the object is
only known to be an OCTET_STRING.

If your subagent runs on an ASCII-based platform and the agent runs on an
EBCDIC-based platform (or the other way around), you can specify that you want
to use the ASCII character set. The agent and subagent programmers know how
to handle the string-based data in this situation.

v The subagent ID. This is an ASN.1 object identifier that uniquely identifies the
subagent. This OID is represented as a null-terminated string using the selected
character set.

For example: 1.3.5.1.2.3.4.5

v The subagent description. This is a DisplayString describing the subagent. This is
a character string using the selected character set.

For an example see “A DPI subagent example” on page 100.

After a subagent has sent a DPI OPEN packet to an agent, it should expect a DPI
RESPONSE packet that informs the subagent about the result of the request. The
packet ID of the RESPONSE packet should be the same as that of the OPEN

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 43

request to which the RESPONSE packet is the response. See “DPI RESPONSE
error codes” on page 95 for a list of valid codes that can be expected.

If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the connection.

If the OPEN is accepted, the next step is to REGISTER one or more MIB subtrees.

Related information
“Connecting to the agent” on page 102

REGISTER request
Before a subagent will receive any requests for MIB objects, it must first register the
variables or subtree it supports with the SNMP agent. The subagent must specify
the following parameters in the REGISTER request:

v The subtree to be registered.

Object level registration: This is a null-terminated string in the selected
character set specifying the subtree to be registered. Object level registration
requires a trailing period following the object number, indicating a register request
to support all instances of an object (for example, ifDescr). Object level
registration requires the subtree must have a trailing period. For example:
1.3.6.1.2.1.2.2.1.2.

Instance level registration: Instance level registration does not require a trailing
period for the subtree. Instance level registration can be used to allow different
subagents to support separate instances of a particular MIB object. Registration
by subagents at the instance level rather than the object level is accomplished by
simply adding the instance number after the object number when building the
registration packet using the mkDPIregister call. For example, passing an object
number such as 1.3.6.1.2.1.2.2.1.2. (note the ending period) would support all
instances of ifDescr. However, a subagent could pass an object or instance
number like 1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8 after the period) to
support only ifDescr.8 (instance 8).

v The requested priority for the registration. The values are:

-1 Request for the best available priority

0 Request for the next best available priority than the highest (best) priority
currently registered for this subtree

NNN Any other positive value requests a specific priority, if available, or the
next best priority that is available.

v The maximum timeout value in seconds. The agent is requested to wait this long
for a response to any request for an object in this subtree. The agent can have
an absolute maximum timeout value which will be used if the subagents ask for
too large a timeout value. A value of 0 can be used to indicate that the DPI
OPEN value should be used for timeout.

After a subagent has sent a DPI REGISTER packet to the agent, it should expect a
DPI RESPONSE packet that informs the subagent about the result of the request.
The packet ID of the RESPONSE packet should be the same as that of the
REGISTER packet to which the RESPONSE packet is the response.

If the response is successful, the error_index field in the RESPONSE packet
contains the priority that the agent assigned to the subtree registration. See “DPI
RESPONSE error codes” on page 95 for a list of valid codes that can be expected.

44 z/OS V1R4.0 CS: IP Programmer’s Reference

Error Code: higherPriorityRegistered: The response to a REGISTER request
might return the error code ″higherPriorityRegistered.″ This might be caused by one
of the following:

v Another subagent already registered the same subtree at a better priority than
what you are requesting.

v Another subagent already registered a subtree at a higher level (at any priority).
For instance, if a registration already exists for subtree 1.2.3.4.5.6 and you try to
register for subtree 1.2.3.4.5.6.<anything> then you will get
″higherPriorityRegistered″ error code.

If you receive this error code, your subtree will be registered, but you will not see
any requests for the subtree. They will be passed to the subagent that registered
with a better priority. If you stay connected, and the other subagent goes away, you
will get control over the subtree at that point in time.

Related information
“Registering a subtree with the agent” on page 105

GET processing
The DPI GET packet holds one or more varBinds that the subagent has taken
responsibility for.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
sets the error_index to the position of the varBind at which the error occurs. The
first varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to be provided in the packet because, by
definition, the varBind information is the same as in the request to which this is a
response and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. The
packet must also include the name, type, length, and value of each varBind
requested.

When you get a request for a nonexisting object or a nonexisting instance of an
object, you must return a NULL value with a type of SNMP_TYPE_noSuchObject or
SNMP_TYPE_noSuchInstance respectively. These two values are not considered
errors, so the error_code and error_index should be 0.

The DPI RESPONSE packet is then sent back to the agent.

Related information
“Processing a GET request” on page 109

“The mkDPIresponse() function” on page 63

SET processing
A DPI SET packet contains the name, type, length, and value of each varBind
requested, plus the value type, value length, and value to be set.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
an error_index listing the position of the varBind at which the error occurs. The first
varBind is index 1, the second varBind is index 2, and so on. No name, type,

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 45

length, or value information needs to provided in the packet because, by definition,
the varBind information is the same as in the request to which this is a response
and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. No
name, type, length, or value information is needed because the RESPONSE to a
SET should contain exactly the same varBind data as the data present in the
request. The agent can use the values it already has.

This suggests that the agent must keep state information, and that is the case. It
needs to do that anyway to be able to later pass the data with a DPI COMMIT or
DPI UNDO packet. Because there are no errors, the subagent must have allocated
the required resources and prepared itself for the SET. It does not yet carry out the
SET, which will be done at COMMIT time.

The subagent sends a DPI RESPONSE packet, indicating success or failure for the
preparation phase, back to the agent. The agent will issue a SET request for all
other varBinds in the same original SNMP request it received. This can be to the
same subagent or to one or more different subagents.

After all SET requests have returned a ″no error″ condition, the agent starts sending
DPI COMMIT packets to the subagents. If any SET request returns an error, the
agent sends DPI UNDO packets to those subagents that indicated successful
processing of the SET preparation phase.

When the subagent receives the DPI COMMIT packet, all the varBind information
will again be available in the packet. The subagent can now carry out the SET
request.

If the subagent encounters an error while processing the COMMIT request, it
creates a DPI RESPONSE packet with value SNMP_ERROR_commitFailed in the
error_code field and an error_index that lists at which varBind the error occurs. The
first varBind is index 1, the second varBind is 2, and so on. No name, type, length,
or value information is needed. The fact that a commitFailed error exists does not
mean that this error should be returned easily. A subagent should do all that is
possible to make a COMMIT succeed.

If there are no errors and the SET and COMMIT have been carried out with
success, the subagent creates a DPI RESPONSE packet in which the error_code is
set to SNMP_ERROR_noError (0) and error_index is set to 0. No name, type,
length, or value information is needed.

So far discussion has focused on successful SET and COMMIT sequences.
However, after a successful SET, the subagent might receive a DPI UNDO packet.
The subagent must now undo any preparations it made during the SET processing,
such as free allocated memory.

Even after a COMMIT, a subagent might still receive a DPI UNDO packet. This will
occur if some other subagent could not complete a COMMIT request. Because of
the SNMP requirement that all varBinds in a single SNMP SET request must be
changed as if simultaneous, all committed changes must be undone if any of the
COMMIT requests fail. In this case the subagent must try and undo the committed
SET operation.

46 z/OS V1R4.0 CS: IP Programmer’s Reference

If the subagent encounters an error while processing the UNDO request, it creates
a DPI RESPONSE packet with value SNMP_ERROR_undoFailed in the error_code
field and an error_index that lists at which varBind the error occurs. The first
varBind is index 1, the second varBind is 2, and so on. No name, type, length, or
value information is needed. The fact that an undoFailed error exists does not mean
that this error should be returned easily. A subagent should do all that is possible to
make an UNDO succeed.

If there are no errors and the UNDO has been successful, the subagent creates a
DPI RESPONSE packet in which the error_code is set to SNMP_ERROR_noError
(0) and error_index is set to 0. No name, type, length, or value information is
needed.

Related information
“Processing a SET/COMMIT/UNDO request” on page 116

GETNEXT processing
The DPI GETNEXT packet contains the objects on which the GETNEXT operation
must be performed. For this operation, the subagent is to return the name, type,
length, and value of the next variable it supports whose (ASN.1) name
lexicographically follows the one passed in the group ID (subtree) and instance ID.

In this case, the instance ID might not be present (NULL) in the incoming DPI
packet, implying that the NEXT object must be the first instance of the first object in
the subtree that was registered.

It is important to realize that a given subagent might support several discontinuous
sections of the MIB tree. In that situation, it would be incorrect to jump from one
section to another. This problem is correctly handled by examining the group ID in
the DPI packet. This group ID represents the reason why the subagent is being
called. It holds the prefix of the tree that the subagent had indicated it supported
(registered).

If the next variable supported by the subagent does not begin with that prefix, the
subagent must return the same object instance as in the request, for example the
group ID and instance ID with a value of SNMP_TYPE_endOfMibView (implied
NULL value). This endOfMibView is not considered an error, so the error_code and
error_index should be 0. If required, the SNMP agent will call upon the subagent
again, but pass it a different group ID (prefix). This is illustrated in the discussion
below.

Assume there are two subagents. The first subagent registers two distinct sections
of the tree: A and C. In reality, the subagent supports variables A.1 and A.2, but it
correctly registers the minimal prefix required to uniquely identify the variable class
it supports.

The second subagent registers section B, which appears between the two sections
registered by the first agent.

If a management station begins browsing the MIB, starting from A, the following
sequence of queries of the form GET-NEXT (group ID, instance ID) would be
performed:

Subagent 1 gets called:
get-next(A,none) = A.1
get-next(A,1) = A.2
get-next(A,2) = endOfMibView

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 47

Subagent 2 is then called:
get-next(B,none) = B.1
get-next(B,1) = endOfMibView

Subagent 1 gets called again:
get-next(C,none) = C.1

Related information
None

GETBULK processing request
You must ask the agent to translate GETBULK requests into multiple GETNEXT
requests. This is basically the default and is specified in the DPI REGISTER packet.
The majority of DPI subagents will run on the same machine as the agent, or on
the same physical network. Therefore, repetitive GETNEXT requests remain local,
and, in general, should not be a problem.

Note: Currently, z/OS SNMP does not support GETBULK protocol between agent
and subagent. These requests are translated into multiple GETNEXT
requests.

Related information
“GETNEXT processing” on page 47

TRAP request
A subagent can request that the SNMP agent generates a trap. The subagent must
provide the desired values for the generic and specific parameters of the trap. It can
optionally provide a set of one or more name, type, length, or value parameters that
will be included in the trap packet.

It can optionally specify an enterprise ID (object identifier) for the trap to be
generated. If a NULL value is specified for the enterprise ID, the agent will use the
subagent identifier from the DPI OPEN packet as the enterprise ID to be sent with
the trap.

Related information
“Generating a TRAP” on page 119

ARE_YOU_THERE request
A subagent can send an ARE_YOU_THERE packet to the agent. If the connection
is in a healthy state, the agent responds with a RESPONSE packet with
SNMP_ERROR_DPI_noError. If the connection is not in a healthy state, the agent
might respond with a RESPONSE packet with an error indication, but the agent
might not react at all. In this situation, you would time out while waiting for a
response.

UNREGISTER request
A subagent can unregister a previously registered subtree. The subagent must
specify the following parameters in the UNREGISTER request:

v The subtree to be unregistered.

Object level unregistration: This is a null-terminated string in the selected
character set specifying the subtree to be unregistered. Object level
unregistration requires a trailing period following the object number, indicating an

48 z/OS V1R4.0 CS: IP Programmer’s Reference

unregister request to all supported instances of an object (for example, ifDescr).
Object level unregistration requires the subtree must have a trailing period. For
example: 1.3.6.1.2.1.2.2.1.2.

Instance level unregistration: Instance level unregistration does not require a
trailing period for the subtree.

Note: Unregistration at the instance level can only be done if the original
registration was done using instance level registration.

Unregistration by subagent at the instance level rather than the object level is
accomplished by simply adding the instance number after the object number
when building the unregistration packet using the mkDPIunregister call. For
example, passing an object number such as 1.3.6.1.2.1.2.2.1.2. (note the ending
period) would support all instances of ifDescr. However, a subagent could pass
an object or instance number like 1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8
after the period) to support only ifDescr.8 (instance 8).

v The reason for the unregister. See “DPI UNREGISTER reason codes” on page
96 for a list of valid reason codes.

After a subagent has sent a DPI UNREGISTER packet to the agent, it should
expect a DPI RESPONSE packet that informs the subagent about the result of the
request. The packet ID of the RESPONSE packet should be the same as that of
the REGISTER packet to which the RESPONSE packet is the response. See “DPI
RESPONSE error codes” on page 95 for a list of valid codes that can be expected.

A subagent should also be prepared to handle incoming DPI UNREGISTER packets
from the agent. In this situation, the DPI packet will contain a reason code for the
UNREGISTER. A subagent does not have to send a response to an UNREGISTER
request. The agent assumes that the subagent will handle it appropriately. The
registration is removed regardless of what the subagent returns.

Related information
“Processing an UNREGISTER request” on page 119

CLOSE request
When a subagent is finished and wants to end processing, it should first
UNREGISTER its subtrees and then close the connection with the agent. To do so,
it must send a DPI CLOSE packet, which specifies a reason for the closing. See
“DPI CLOSE reason codes” on page 95 for a list of valid codes. You should not
expect a response to the CLOSE request.

A subagent should also be prepared to handle an incoming DPI CLOSE packet
from the agent. In this case, the packet will contain a reason code for the CLOSE
request. A subagent does not have to send a response to a CLOSE request. The
agent assumes that the subagent will handle it appropriately. The close takes place
regardless of what the subagent does with it.

Related information
“Processing a CLOSE request” on page 119

Multithreading programming considerations
The DPI Version 2.0 program does not support multithreaded subagents.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 49

There are several static buffers in the DPI code. For compatibility reasons, that
cannot be changed. Real multithread support will probably mean several potentially
incompatible changes to the DPI Version 2.0 API.

Use a locking mechanism: Because the DPI API is not reentrant, to use your
subagent in a multithreaded process you should use some locking mechanism of
your own around the static buffers. Otherwise, one thread might be writing into the
static buffer while another is writing into the same buffer at the same time. There
are two static buffers. One buffer is for building the serialized DPI packet before
sending it out and the other buffer is for receiving incoming DPI packets.

Basically, all DPI functions that return a pointer to an unsigned character are the
DPI functions that write into the static buffer to create a serialized DPI packet:
mkDPIAreYouThere()
mkDPIopen()
mkDPIregister()
mkDPIunregister()
mkDPItrap()
mkDPIresponse()
mkDPIpacket()
mkDPIclose ()

After you have called the DPIsend_packet_to_agent() function for the buffer, which
is pointed to by the pointer returned by one of the preceding functions, the buffer is
free to use again.

There is one function that reads the static input buffer:
pDPIpacket()

The input buffer gets filled by the DPIawait_packet_from_agent() function. Upon
return from the await, you receive a pointer to the static input buffer. The
pDPIpacket() function parses the static input buffer and returns a pointer to
dynamically allocated memory. Therefore, after the pDPIpacket() call the buffer is
available for use again.

The DPI internal handle structures and control blocks used by the underlying code
to send and receive data to and from the agent are also static data areas. Ensure
that you use your own locking mechanism around the functions that add, change, or
delete data in those static structures. The functions that change those internal static
structures are:
DPIconnect_to_agent_TCP() /* everyone has this one */
DPIconnect_to_agent_UNIXstream() /* supported */
DPIdisconnect_from_agent() /* everyone has this one */

Other functions will access the static structures. These other functions must be
assured that the structure is not being changed while they are referencing it during
their execution. The other functions are:
DPIawait_packet_from_agent()
DPIsend_packet_to_agent()
DPIget_fd_for_handle()

While the last three functions can be executed concurrently in different threads, you
must ensure that no other thread is adding or deleting handles in these static
structures during this process.

50 z/OS V1R4.0 CS: IP Programmer’s Reference

Functions, data structures, and constants
Use these lists to locate the descriptions for the functions, data structures, and
constants.

Basic DPI Functions:
“The DPIdebug() function” on page 53
“The DPI_PACKET_LEN() macro” on page 54
“The fDPIparse() function” on page 55
“The fDPIset() function” on page 56
“The mkDPIAreYouThere() function” on page 57
“The mkDPIclose() function” on page 58
“The mkDPIopen() function” on page 59
“The mkDPIregister() function” on page 61
“The mkDPIresponse() function” on page 63
“The mkDPIset() function” on page 65
“The mkDPItrap() function” on page 67
“The mkDPIunregister() function” on page 69
“The pDPIpacket() function” on page 70

DPI Transport-Related Functions:
“The DPIawait_packet_from_agent() function” on page 72
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76
“The DPIdisconnect_from_agent() function” on page 78
“The DPIget_fd_for_handle() function” on page 79
“The DPIsend_packet_to_agent() function” on page 80
“The lookup_host() function” on page 82

Data Structures:
“The snmp_dpi_close_packet structure” on page 84
“The snmp_dpi_get_packet structure” on page 85
“The snmp_dpi_hdr structure” on page 86
“The snmp_dpi_next_packet structure” on page 88
“The snmp_dpi_resp_packet structure” on page 89
“The snmp_dpi_set_packet structure” on page 90
“The snmp_dpi_ureg_packet structure” on page 92
“The snmp_dpi_u64 structure” on page 93

Constants and Values:
“DPI CLOSE reason codes” on page 95
“DPI packet types” on page 95
“DPI RESPONSE error codes” on page 95
“DPI UNREGISTER reason codes” on page 96
“DPI SNMP value types” on page 96
“Value representation” on page 97

Related Information:
“Character set selection” on page 94
“The snmp_dpi.h include file” on page 99

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 51

Basic DPI API functions
This section describes each of the basic DPI functions that are available to the DPI
subagent programmer.

The Basic DPI Functions are:
v “The DPIdebug() function” on page 53
v “The DPI_PACKET_LEN() macro” on page 54
v “The fDPIparse() function” on page 55
v “The fDPIset() function” on page 56
v “The mkDPIAreYouThere() function” on page 57
v “The mkDPIclose() function” on page 58
v “The mkDPIopen() function” on page 59
v “The mkDPIregister() function” on page 61
v “The mkDPIresponse() function” on page 63
v “The mkDPIset() function” on page 65
v “The mkDPItrap() function” on page 67
v “The mkDPIunregister() function” on page 69
v “The pDPIpacket() function” on page 70

52 z/OS V1R4.0 CS: IP Programmer’s Reference

The DPIdebug() function

Format

Parameters
level If this value is 0, tracing is turned off. If it has any other value, tracing is

turned on at the specified level. The higher the value, the more detail. A
higher level includes all lower levels of tracing. Currently there are two
levels of detail:

1 Display packet creation and parsing.

2 Display hex dump of incoming and outgoing DPI packets.

Usage
The DPIdebug() function turns DPI internal debugging or tracing on or off.

The trace output is sent to the SYSLOG Daemon. Refer to the z/OS
Communications Server: IP System Administrator’s Commands for more
information.

Examples
#include <snmp_dpi.h>

DPIdebug(2);

Context
“The snmp_dpi.h include file” on page 99

#include <snmp_dpi.h>

void DPIdebug(int level);

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 53

The DPI_PACKET_LEN() macro

Format

Parameters
packet_p

A pointer to a serialized DPI packet

Return Codes
An integer representing the total DPI packet length

Usage
The DPI_PACKET_LEN macro generates C code that returns an integer
representing the length of a DPI packet. It uses the first two octets in network byte
order of the packet to calculate the length.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
int length;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

length = DPI_PACKET_LEN(pack_p);
/* send packet to agent */

} /* endif */

#include <snmp_dpi.h>

int DPI_PACKET_LEN(unsigned char *packet_p)

54 z/OS V1R4.0 CS: IP Programmer’s Reference

The fDPIparse() function

Format

Parameters
hdr_p A pointer to the parse tree. The parse tree is represented by an

snmp_dpi_hdr structure.

Usage
The fDPIparse() function frees a parse tree that was previously created by a call to
pDPIpacket(). The parse tree might have been created in other ways too. After
calling fDPIparse(), no further references to the parse tree can be made.

A complete or partial DPI parse tree is also implicitly freed by a call to a DPI
function that serializes a parse tree into a DPI packet. The section that describes
each function tells you if this is the case. An example of such a function is
mkDPIresponse().

Examples
#include <snmp_dpi.h>
snmp_dpi_hdr *hdr_p;
unsigned char *pack_p; /* assume pack_p points to */

/* incoming DPI packet */
hdr_p = pDPIpacket(pack_p);

/* handle the packet and when done do the following */
if (hdr_p) fDPIparse(hdr_p);

Context
“The snmp_dpi_hdr structure” on page 86
“The pDPIpacket() function” on page 70
“The snmp_dpi.h include file” on page 99

#include <snmp_dpi.h>

void fDPIparse(snmp_dpi_hdr *hdr_p);

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 55

The fDPIset() function

Format

Parameters
packet_p

A pointer to the first snmp_dpi_set_packet structure in a chain of such
structures.

Usage
The fDPIset() function is typically used if you must free a chain of one or more
snmp_dpi_set_packet structures. This might be the case if you are in the middle of
preparing a chain of such structures for a DPI RESPONSE packet, but then run into
an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass
the chain of snmp_dpi_set_packet structures, the mkDPIresponse() function will free
the chain of snmp_dpi_set_packet structures.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p, *first_p;
long int num1 = 0, num2 = 0;

hdr_p = pDPIpacket(pack_p); /* assume pack_p */
/* analyze packet and assume all OK */ /* points to the */
/* now prepare response; 2 varBinds */ /* incoming packet */

set_p = mkDPIset(snmp_dpi_NULL_p, /* create first one */
"1.3.6.1.2.3.4.5.","1.0", /* OID=1, instance=0 */
SNMP_TYPE_Integer32,
sizeof(num1), &num1);

if (set_p) { /* if success, then */
first_p = set_p; /* save ptr to first */
set_p = mkDPIset(set_p, /* chain next one */

"1.3.6.1.2.3.4.5.","1.1", /* OID=1, instance=1 */
SNMP_TYPE_Integer32,
sizeof(num2), &num2);

if (set_p) { /* success 2nd one */
pack_p = mkDPIresponse(hdr_p, /* make response */

SNMP_ERROR_noError, /* It will also free */
0L, first_p); /* the set_p tree */

/* send DPI response to agent */
} else { /* 2nd mkDPIset fail */

fDPIset(first_p); /* must free chain */
} /* endif */

} /* endif */

Context
“The fDPIparse() function” on page 55
“The snmp_dpi_set_packet structure” on page 90
“The mkDPIresponse() function” on page 63

#include <snmp_dpi.h>

void fDPIset(snmp_dpi_set_packet *packet_p);

56 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIAreYouThere() function

Format

Parameters
None

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE
packet that can be sent to the DPI peer, which is normally the agent.

A subagent connected through TCP or UNIXstream probably does not need this
function because, normally when the agent breaks the connection, you will receive
an EOF on the file descriptor.

If your connection to the agent is still healthy, the agent will send a DPI
RESPONSE with SNMP_ERROR_DPI_noError in the error code field and 0 in the
error index field. The RESPONSE will have no varBind data. If your connection is
not healthy, the agent might send a response with an error indication, or might not
send a response at all.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIAreYouThere();
if (pack_p) {

/* send the packet to the agent */
} /* endif */
/* wait for response with DPIawait_packet_from_agent() */
/* normally the response should come back pretty quickly, */
/* but it depends on the load of the agent */

Context
“The snmp_dpi_resp_packet structure” on page 89
“The DPIawait_packet_from_agent() function” on page 72

#include <snmp_dpi.h>

unsigned char *mkDPIAreYouThere(void);

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 57

The mkDPIclose() function

Format

Parameters
reason_code

The reason for closing the DPI connection. See “DPI CLOSE reason codes”
on page 95 for a list of valid reason codes.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIclose() function creates a serialized DPI CLOSE packet that can be sent
to the DPI peer. As a result of sending the packet, the DPI connection will be
closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREGISTER
for all registered subtrees on the connection being closed.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

/* send the packet to the agent */
} /* endif */

Context
“The snmp_dpi_close_packet structure” on page 84
“DPI CLOSE reason codes” on page 95

#include <snmp_dpi.h>

unsigned char *mkDPIclose(char reason_code);

58 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIopen() function

Format

Parameters
oid_p A pointer to a null-terminated character string representing the object

identifier which uniquely identifies the subagent. The OID valued pointed to
by oid_p must be in the EBCDIC character set when communicating with a
TCP/IP UNIX System Services SNMP agent. The agent will add the OID
passed in the mkDPIopen call to the sysORTable as sysORID in a
corresponding new entry. By convention, sysORID should match a
capabilities statement OID to refer to the MIBs supported by the subagent.

For a list of MIB variables, refer to the z/OS Communications Server: IP
System Administrator’s Commands.

description_p
A pointer to a null-terminated character string, which is a descriptive name
for the subagent. This can be any DisplayString.

timeout
The requested timeout for this subagent. An agent often has a limit for this
value and it will use that limit if this value is larger. A timeout of 0 has a
special meaning in the sense that the agent will use its own default timeout
value.

max_varBinds
The maximum number of varBinds per DPI packet that the subagent is
prepared to handle. It must be a positive number or 0.

v If a value greater than 1 is specified, the agent will try to combine as
many varBinds that belong to the same subtree per DPI packet as
possible up to this value.

v If a value of 0 is specified, the agent will try to combine up to as many
varBinds as are present in the SNMP packet and belong to the same
subtree; there is no limit on the number of varBinds present in the DPI
packet.

character_set
The character set that you want to use for string-based data fields in the
DPI packets and structures. See “Character set selection” on page 94 for
more information.

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the
platform on which the agent that you connect to is running.

#include <snmp_dpi.h>

unsigned char *mkDPIopen(/* Make a DPI open packet */
char *oid_p, /* subagent Identifier (OID) */
char *description_p, /* subagent descriptive name */
unsigned long timeout, /* requested default timeout */
unsigned long max_varBinds, /* max varBinds per DPI packet*/
char character_set, /* selected character set */
#define DPI_NATIVE_CSET 0 /* 0 = native character set */
#define DPI_ASCII_CSET 1 /* 1 = ASCII character set */

unsigned long password_len, /* length of password (if any)*/
unsigned char *password_p); /* ptr to password (if any) */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 59

password_len
The length in octets of an optional password. It depends on the agent
implementation if a password is needed.

If coded, this parameter is ignored with the z/OS SNMP agent.

password_p
A pointer to an octet string representing the password for this subagent. A
password might include any character value, including the NULL character.
If the password_len is 0, this can be a NULL pointer.

If coded, this parameter is ignored with the ® SNMP agent.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIopen() function creates a serialized DPI OPEN packet that can then be
sent to the DPI peer that is a DPI-capable SNMP agent.

Normally you will want to use the native character set, which is the easiest for the
subagent programmer. However, if the agent and subagent each run on their own
platforms and those platforms use different native character sets, you must select
the ASCII character set, so that you both know exactly how to represent
string-based data that is being sent back and forth.

Currently, if you specify a password parameter, it will be ignored. You do not need
to specify a password to connect to the SNMP agent; you can pass a length of 0
and a NULL pointer for the password.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
"Sample DPI subagent"
0L,2L, DPI_NATIVE_CSET, /* max 2 varBinds */
0,(char *)0);

if (pack_p) {
/* send packet to the agent */

} /* endif */

Context
“Character set selection” on page 94

60 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIregister() function

Format

Parameters
timeout

The requested timeout in seconds. An agent often has a limit for this value
and it will use that limit if this value is larger. The value 0 has special
meaning in the sense that it tells the agent to use the timeout value that
was specified in the DPI OPEN packet.

priority
The requested priority. This field can contain any of these values:

-1 Requests the best available priority.

0 Requests a better priority than the highest priority currently
registered. Use this value to obtain the SNMP DPI Version 1
behavior.

nnn Any positive value. You will receive that priority if available;
otherwise, you will receive the next best priority that is available.

group_p
A pointer to a null-terminated character string that represents the subtree to
be registered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

bulk_select
Specifies if you want the agent to pass GETBULK on to the subagent or to
map them into multiple GETNEXT requests. The choices are:

DPI_BULK_NO
Do not pass any GETBULK requests, but instead map a GETBULK
request into multiple GETNEXT requests.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not failure, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIregister() function creates a serialized DPI REGISTER packet that can
then be sent to the DPI peer that is a DPI-capable SNMP agent.

#include <snmp_dpi.h>

unsigned char *mkDPIregister(/* Make a DPI register packet */
unsigned short timeout, /* in seconds (16-bit) */
long int priority, /* requested priority */
char *group_p, /* ptr to group ID (subtree) */
char bulk_select);/* Bulk selection (GETBULK) */
#define DPI_BULK_NO 0 /* map GETBULK into GETNEXTs */
*/

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 61

Normally, the SNMP agent sends a DPI RESPONSE packet back. This packet
identifies if the register was successful or not.

The agent returns the assigned priority in the error index field of the response
packet.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIregister(0,0L,"1.3.6.1.2.3.4.5."
DPI_BULK_NO);

if (pack_p) {
/* send packet to agent and await response */

} /* endif */

Context
“The snmp_dpi_resp_packet structure” on page 89

62 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIresponse() function

Format

Parameters
hdr_p A pointer to the parse tree of the DPI request to which this DPI packet will

be the response. The function uses this parse tree to copy the packet_id
and the DPI version and release, so that the DPI packet is correctly
formatted as a response.

error_code
The error code.

See “DPI RESPONSE error codes” on page 95 for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first varBind.
This field should be 0 if there is no error.

packet_p
A pointer to a chain of snmp_dpi_set_packet structures. This partial parse
tree will be freed by the mkDPIresponse() function, so upon return you
cannot refer to it anymore. Pass a NULL pointer if there are no varBinds to
be returned.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIresponse() function is used at the subagent side to prepare a DPI
RESPONSE packet to a GET, GETNEXT, SET, COMMIT, or UNDO request. The
resulting packet can be sent to the DPI peer, which is normally a DPI-capable
SNMP agent.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p;
long int num;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */

#include <snmp_dpi.h>

unsigned char *mkDPIresponse(/* Make a DPI response packet*/
snmp_dpi_hdr *hdr_p, /* ptr to packet to respnd to*/
long int error_code, /* error code: SNMP_ERROR_xxx*/
long int error_index, /* index to varBind in error */
snmp_dpi_set_packet *packet_p);/* ptr to varBinds, a chain */

/* of dpi_set_packets */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 63

set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

SNMP_ERROR_noError, 0L, set_p);
if (pack_p) {

/* send packet to agent */
} /* endif */

} /* endif */
} /* endif */

Context
“The pDPIpacket() function” on page 70
“The snmp_dpi_hdr structure” on page 86
“The snmp_dpi_set_packet structure” on page 90

64 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIset() function

Format

Parameters
packet_p

A pointer to a chain of snmp_dpi_set_packet structures. Pass a NULL
pointer if this is the first structure to be created.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this GET request to be passed to this DPI subagent.
The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed. Use of the term instance_p here should
not be confused with an OBJECT instance because this string can consist
of a piece of the object identifier plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See “DPI SNMP value types” on page 96 for a list of currently defined value
types.

value_len
This is the value that specifies the length in octets of the value pointed to
by the value field. The length can be 0 if the value is of type
SNMP_TYPE_NULL.

The maximum value is 64KB - 1. However, the implementation often makes
the length significantly less.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of implicit or explicit type SNMP_TYPE_NULL.

Return Codes
If successful and a chain of one or more packets was passed in the packet_p
parameter, the same pointer that was passed in packet_p is returned. A new
dynamically allocated structure has been added to the end of that chain of
snmp_dpi_get_packet structures.
If successful and a NULL pointer was passed in the packet_p parameter, a
pointer to a new dynamically allocated structure is returned.
If not successful, a NULL pointer is returned.

Usage
The mkDPIset() function is used at the subagent side to prepare a chain of one or
more snmp_dpi_set_packet structures. This chain is used to create a DPI

#include <snmp_dpi.h>

snmp_dpi_set_packet *mkDPIset(/* Make DPI set packet tree */
snmp_dpi_set_packet *packet_p, /* ptr to SET structure */
char *group_p, /* ptr to group ID(subtree)*/
char *instance_p,/* ptr to instance OIDstring*/
int value_type,/* value type: SNMP_TYPE_xxx*/
int value_len, /* length of value */
void *value_p); /* ptr to value */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 65

RESPONSE packet by a call to mkDPIresponse() that can be sent to the DPI peer,
which is normally a DPI-capable SNMP agent.

The chain of snmp_dpi_set_packet structures can also be used to create a DPI
TRAP packet that includes varBinds as explained in “The mkDPItrap() function” on
page 67.

For the value_len, the maximum value is 64KB - 1. However, the implementation
often makes the length significantly less. For example, the SNMP PDU size might
be limited to 484 bytes at the SNMP manager or agent side. In this case, the total
response packet cannot exceed 484 bytes, so a value_len is limited to 484 bytes.
You can send the DPI packet to the agent, but the manager will never see it.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p;
long int num;

hdr_p = pDPIpacket(pack_p) /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

SNMP_ERROR_noError,
0L, set_p);

if (pack_p)
/* send packet to agent */

} /* endif */
} /* endif */

} /* endif */

If you must chain many snmp_dpi_set_packet structures, be sure to note that the
packets are chained only by forward pointers. It is recommended that you use the
last structure in the existing chain as the packet_p parameter. Then, the underlying
code does not have to scan through a possibly long chain of structures to chain the
new structure at the end.

Context
“The pDPIpacket() function” on page 70
“The mkDPIresponse() function” on page 63
“The mkDPItrap() function” on page 67
“The snmp_dpi_hdr structure” on page 86
“The snmp_dpi_set_packet structure” on page 90
“DPI SNMP value types” on page 96
“Value representation” on page 97

66 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPItrap() function

Format

Parameters
generic

The generic trap type. The range of this value is 0-6, where 6, which is
enterprise specific, is the type that is probably used most by DPI subagent
programmers. The values in the range 0-5 are well defined standard SNMP
traps.

specific
The enterprise specific trap type. This can be any value that is valid for the
MIB subtrees that the subagent implements.

packet_p
A pointer to a chain of snmp_dpi_set_structures, representing the varBinds
to be passed with the trap. This partial parse tree will be freed by the
mkDPItrap() function so you cannot refer to it anymore upon completion of
the call. A NULL pointer means that there are no varBinds to be included in
the trap.

enterprise_p
A pointer to a null-terminated character string representing the enterprise ID
(object identifier) for which this trap is defined. A NULL pointer can be used.
In this case, the subagent identifier, as passed in the DPI OPEN packet, will
be used when the agent receives the DPI TRAP packet.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPItrap() function is used at the subagent side to prepare a DPI TRAP
packet. The resulting packet can be sent to the DPI peer, which is normally a
DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_set_packet *set_p;
long int num;

set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
"1.3.6.1.2.3.4.5.", "1.0",

#include <snmp_dpi.h>

unsigned char *mkDPItrap(/* Make a DPI trap packet */
long int generic, /* generic traptype (32 bit)*/
long int specific, /* specific traptype (32 bit)*/
snmp_dpi_set_packet *packet_p, /* ptr to varBinds, a chain */

/* of dpi_set_packets */
char *enterprise_p); /* ptr to enterprise OID */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 67

SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPItrap(6,1,set_p, (char *)0);
if (pack_p) {

/* send packet to agent */
} /* endif */

} /* endif */

Context
“The mkDPIset() function” on page 65

68 z/OS V1R4.0 CS: IP Programmer’s Reference

The mkDPIunregister() function

Format

Parameters
reason_code

The reason for the unregister.

See “DPI UNREGISTER reason codes” on page 96 for a list of the currently
defined reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree to
be unregistered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

Return Codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() functions
that create a serialized DPI packet.

Usage
The mkDPIunregister() function creates a serialized DPI UNREGISTER packet that
can be sent to the DPI peer, which is a DPI-capable SNMP agent.

Normally, the SNMP peer then sends a DPI RESPONSE packet back. This packet
identifies if the unregister was successful or not.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIunregister(
SNMP_UNREGISTER_goingDown,
"1.3.6.1.2.3.4.5.");

if (pack_p) {
/* send packet to agent and await response */

} /* endif */

Context
“The snmp_dpi_ureg_packet structure” on page 92

#include <snmp_dpi.h>

unsigned char *mkDPIunregister(/* Make DPI unregister packet */
char reason_code; /* unregister reason code */
char *group_p); /* ptr to group ID (subtree) */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 69

The pDPIpacket() function

Format

Parameters
packet_p

A pointer to a serialized DPI packet.

Return Codes
If successful, a pointer to a DPI parse tree (snmp_dpi_hdr) is returned. Memory
for the parse tree has been dynamically allocated, and it is the callers
responsibility to free it when no longer needed. You can use the fDPIparse()
function to free the parse tree.
If not successful, a NULL pointer is returned.

Usage
The pDPIpacket() function parses the buffer pointed to by the packet_p parameter.
It ensures that the buffer contains a valid DPI packet and that the packet is for a
DPI version and release that is supported by the DPI functions in use.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, and handle it */

}

Context
“The snmp_dpi_hdr structure” on page 86
“The snmp_dpi.h include file” on page 99
“The fDPIparse() function” on page 55

#include <snmp_dpi.h>

snmp_dpi_hdr *pDPIpacket(unsigned char *packet_p);

70 z/OS V1R4.0 CS: IP Programmer’s Reference

Transport-related DPI API functions
This section describes each of the DPI transport-related functions that are available
to the DPI subagent programmer. These functions try to hide any platform specific
issues for the DPI subagent programmer so that the subagent can be made as
portable as possible. If you need detailed control for sending and awaiting DPI
packets, you might have to do some of the transport-related code yourself.

The transport-related functions are basically the same for any platform, except for
the initial call to set up a connection. SNMP currently supports the TCP transport
type, as well as UNIXstream.

The Transport-Related DPI API Functions are:
v “The DPIawait_packet_from_agent() function” on page 72
v “The DPIconnect_to_agent_TCP() function” on page 74
v “The DPIconnect_to_agent_UNIXstream() function” on page 76
v “The DPIdisconnect_from_agent() function” on page 78
v “The DPIget_fd_for_handle() function” on page 79
v “The DPIsend_packet_to_agent() function” on page 80
v “The lookup_host() function” on page 82

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 71

The DPIawait_packet_from_agent() function

Format

Parameters
handle

A handle as obtained with a DPIconnect_to_agent_xxxx() call.

timeout
A timeout value in seconds. There are two special values:

-1 Causes the function to wait forever until a packet arrives.

0 Means that the function will only check if a packet is waiting. If not,
an immediate return is made. If there is a packet, it will be returned.

message_p
The address of a pointer that will receive the address of a static DPI packet
buffer or, if there is no packet, a NULL pointer.

length The address of an unsigned long integer that will receive the length of the
received DPI packet or, if there is no packet, a 0 value.

Return Codes
If successful, a 0 (DPI_RC_OK) is returned. The buffer pointer and length of the
caller will be set to point to the received DPI packet and to the length of that
packet.
If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page
98 for a list of possible error codes.

DPI_RC_NOK
This is a return code indicating the DPI code is out of sync or has a bug.

DPI_RC_EOF
End of file on the connection. The connection has been closed.

DPI_RC_IO_ERROR
An error occurred with an underlying select() or recvfrom() call, or a DPI
packet was read that was less than 2 bytes. DPI uses the first 2 bytes to
get the packet length.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

DPI_RC_TIMEOUT
No packet was received during the specified timeout period.

DPI_RC_PACKET_TOO_LARGE
The packet received was too large.

#include <snmp_dpi.h>

int DPIawait_packet_from_agent(/* await a DPI packet */
int handle, /* on this connection */
int timeout, /* timeout in seconds */
unsigned char **message_p, /* receives ptr to data */
unsigned long *length); /* receives length of data */

72 z/OS V1R4.0 CS: IP Programmer’s Reference

Usage
The DPIawait_packet_from_agent() function is used at the subagent side to await a
DPI packet from the DPI-capable SNMP agent. The programmer can specify how
long to wait.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;
unsigned long length;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
/* do useful stuff */
rc = DPIawait_packet_from_agent(handle, -1,

&pack_p, &length);
if (rc) {

printf("Error %d from await packet\n");
exit(1);

} /* endif */
/* handle the packet */

Context
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 73

The DPIconnect_to_agent_TCP() function

Format

Parameters
hostname_p

A pointer to a null-terminated character string representing the host name or
IP address in dotted decimal notation of the host where the DPI-capable
SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the dpiPort from the SNMP agent through
an SNMP GET request.

Note: For z/OS CS, the SNMP community passed by the subagent must
be in ASCII only.

Return Codes
If successful, a nonnegative integer that represents the connection is returned. It is
to be used as a handle in subsequent calls to DPI transport-related functions.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page 98
for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the dpiPort number. There are many reasons for this, for
example: bad host name, bad community name, or default time-out (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set up
a socket (could be due to an error on a socket(), bind(), connect() call, or
other internal errors).

Usage
The DPIconnect_to_agent_TCP() function is used at the subagent side to set up a
TCP connection to the DPI-capable SNMP agent.

As part of the connection processing, the DPIconnect_to_agent_TCP() function
sends an SNMP GET request to the SNMP agent to retrieve the port number of the
DPI port to be used for the TCP connection. By default, this SNMP GET request is
sent to the well-known SNMP port 161. If the SNMP agent is listening on a port
other than well-known port 161, the SNMP_PORT environment variable can be set
to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_TCP(). Use setenv() to override port 161 before using this
function.

Examples
#include <snmp_dpi.h>
int handle;

#include <snmp_dpi.h>

int DPIconnect_to_agent_TCP(/* Connect to DPI TCP port */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

74 z/OS V1R4.0 CS: IP Programmer’s Reference

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */

Context
“Return codes from DPI transport-related functions” on page 98
“The DPIconnect_to_agent_UNIXstream() function” on page 76

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 75

The DPIconnect_to_agent_UNIXstream() function

Format

Parameters
hostname_p

A pointer to a null-terminated character string representing the local host
name or IP address in dotted decimal notation of the local host where the
DPI-capable SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the UNIX® pathname from the SNMP agent
through an SNMP GET request.

Note: For z/OS CS, the SNMP community passed by the subagent must
be in ASCII only.

Return Codes
If successful, a nonnegative integer that represents the connection is returned. It
is to be used as a handle in subsequent calls to DPI transport-related functions.
If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page
98 for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the UNIX pathname. There are many reasons for this, for
example: bad host name, bad community name, or default time-out (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set up
a socket (could be due to an error on a socket(), bind(), connect() call, or
other internal errors).

Usage
The DPIconnect_to_agent_UNIXstream() function is used at the subagent side to
set up an AF_UNIX connection to the DPI-capable SNMP agent.

As part of the connection processing, the DPIconnect_to_agent_UNIXstream()
function will send an SNMP GET request to the SNMP agent to retrieve the
pathname to be used for the UNIX streams connection. By default, this SNMP GET
request is sent to the well-known SNMP port 161. If the SNMP agent is listening on
a port other than well-known port 161, the SNMP_PORT environment variable can
be set to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_UNIXstream(). Use setenv() to override port 161 before using
this function.

Establishing Permission uses a pathname in the HFS as the name of the socket
for connect. This pathname is available at the SNMP agent through the MIB object
1.3.6.1.4.1.2.2.1.1.3, which has the name dpiPathNameForUnixStream. The SNMP
agent has a default name that it uses (/tmp/dpi_socket) if you do not supply another

#include <snmp_dpi.h>

int DPIconnect_to_agent_UNIXstream(/* Connect to DPI UNIXstream */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

76 z/OS V1R4.0 CS: IP Programmer’s Reference

name in the agent startup parameter (-s) or in the OSNMPD.DATA file. Whatever
name is chosen, it has to live in the HFS as a character special file.

To run a user-written subagent from a nonprivileged userid, set the permission bits
for the character special file to write access. Otherwise, a subagent using this
function will have to be run from a superuser or other user with appropriate
privileges.

Examples
#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_UNIXstream("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */

Context
“Return codes from DPI transport-related functions” on page 98
“The DPIconnect_to_agent_TCP() function” on page 74

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 77

The DPIdisconnect_from_agent() function

Format

Parameters
handle

A handle as obtained with a DPIconnect_to_agent_xxxx() call.

Usage
The DPIdisconnect_from_agent() function is used at the subagent side to terminate
a connection to the DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
/* do useful stuff */
DPIdisconnect_from_agent(handle);

Context
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76

#include <snmp_dpi.h>

void DPIdisconnect_from_agent(/* disconnect from DPI (agent)*/
int handle); /* close this connection */

78 z/OS V1R4.0 CS: IP Programmer’s Reference

The DPIget_fd_for_handle() function

Format

Parameters
handle

A handle that was obtained with a DPIconnect_to_agent_xxxx() call.

Return Codes
If successful, a positive integer representing the file descriptor associated with the
specified handle.

If not successful, a negative integer is returned, which indicates the error that
occurred. See “Return codes from DPI transport-related functions” on page 98 for a
list of possible error codes.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Usage
The DPIget_fd_for_handle function is used to obtain the file descriptor for the
handle, which was obtained with a DPIconnect_to_agent_TCP() call or a
DPIconnect_to_agent_UNIXstream() call.

Using this function to retrieve the file descriptor associated with your DPI
connections enables you to use either the select or selectex socket calls. Using
selectex enables your program to wait for event control blocks (ECBs), in addition
to a read condition. This is one example of how an MVS application can wait for
notification of the receipt of a modify command (through an ECB post) or DPI
packet at the same time.

Examples
#include <snmp_dpi.h>
#include /* other include files for BSD sockets and such */
int handle;
int fd;

handle = DPIconnect_to_agent_TCP("127.0.0.1","public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

}
fd = DPIget_fd_for_handle(handle);
if (fd <0) {

printf("Error %d from get_fd\n",fd);
exit(1);

}

Context
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76

#include <snmp_dpi.h>

int DPIget_fd_for_handle(/* get the file descriptor */
int handle); /* for this handle */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 79

The DPIsend_packet_to_agent() function

Format

Parameters
handle

A handle as obtained with a DPIconnect_to_agent_xxxx() call.

message_p
A pointer to the buffer containing the DPI packet to be sent.

length The length of the DPI packet to be sent. The DPI_PACKET_LEN macro is a
useful macro to calculate the length.

Return Codes
If successful, a 0 (DPI_RC_OK) is returned.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page 98
for a list of possible error codes.

DPI_RC_NOK
This is a return code, but it really means the DPI code is out of sync or has
a bug.

DPI_RC_IO_ERROR
An error occurred with an underlying send(), or the send() failed to send all
of the data on the socket (incomplete send).

DPI_RC_INVALID_ARGUMENT
The message_p parameter is NULL or the length parameter has a value of
0.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Usage
The DPIsend_packet_to_agent() function is used at the subagent side to send a
DPI packet to the DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
pack_p = mkDPIopen("1.3.6.1.2.3.4.5",

"Sample DPI subagent"
0L,2L,,DPI_NATIVE_CSET,
0,(char *)0);

#include <snmp_dpi.h>

int DPIsend_packet_to_agent(/* send a DPI packet */
int handle, /* on this connection */
unsigned char *message_p, /* ptr to the packet data */
unsigned long length); /* length of the packet */

80 z/OS V1R4.0 CS: IP Programmer’s Reference

if (pack_p) {
rc = DPIsend_packet_to_agent(handle,pack_p,

DPI_PACKET_LEN(pack_p));
if (rc) {

printf("Error %d from send packet\n");
exit(1);

} /* endif */
} else {

printf("Can’t make DPI OPEN packet\n");
exit(1);

} /* endif */
/* await the response */

Context
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76
“The DPI_PACKET_LEN() macro” on page 54

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 81

The lookup_host() function

Format

Parameters
hostname_p

A pointer to a null-terminated character string representing the host name or
IP address in dotted decimal notation of the host where the DPI-capable
SNMP agent is running.

Return Codes
If successful, the IP address is returned in network byte order, so it is ready to be
used in a sockaddr_in structure.

If not successful, a value of 0 is returned.

Usage
The lookup_host() function is used to obtain the IP address in network byte order of
a host or IP address in dotted decimal notation. This function is implicitly executed
by both DPIconnect_to_agent_TCP and DPIconnect_to_agent UNIXstream.

Context
“The DPIconnect_to_agent_TCP() function” on page 74

#include <snmp_dpi.h>

unsigned long lookup_host(/* find IP address in network */
char *hostname_p); /* byte order for this host */

82 z/OS V1R4.0 CS: IP Programmer’s Reference

DPI structures
This section describes each data structure that is used in the SNMP DPI API:
v “The snmp_dpi_close_packet structure” on page 84
v “The snmp_dpi_get_packet structure” on page 85
v “The snmp_dpi_hdr structure” on page 86
v “The snmp_dpi_next_packet structure” on page 88)
v “The snmp_dpi_resp_packet structure” on page 89
v “The snmp_dpi_set_packet structure” on page 90
v “The snmp_dpi_ureg_packet structure” on page 92
v “The snmp_dpi_u64 structure” on page 93

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 83

The snmp_dpi_close_packet structure

Format

Parameters
reason_code

The reason for the close.

See “DPI CLOSE reason codes” on page 95 for a list of valid reason codes.

Usage
The snmp_dpi_close_packet structure represents a parse tree for a DPI CLOSE
packet.

The snmp_dpi_close_packet structure might be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_CLOSE. The
snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_close_packet
structure.

An snmp_dpi_close_packet_structure is also created as a result of an mkDPIclose()
call, but the programmer never sees the structure because mkDPIclose()
immediately creates a serialized DPI packet from it and then frees the structure.

It is recommended that DPI subagent programmer uses mkDPIclose() to create a
DPI CLOSE packet.

Context
“The pDPIpacket() function” on page 70
“The mkDPIclose() function” on page 58
“The snmp_dpi_hdr structure” on page 86

struct dpi_close_packet {
char reason_code; /* reason for closing */

};
typedef struct dpi_close_packet snmp_dpi_close_packet;
#define snmp_dpi_close_packet_NULL_p ((snmp_dpi_close_packet*)0)

84 z/OS V1R4.0 CS: IP Programmer’s Reference

The snmp_dpi_get_packet structure

Format

Parameters
object_p

A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this SET request to be passed to this DPI subagent.
The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_get_packet structure. If this next field
contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_get_packet structure represents a parse tree for a DPI GET packet.

At the subagent side, the snmp_dpi_get_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GET. The snmp_dpi_hdr structure then contains a pointer to a chain of
one or more snmp_dpi_get_packet structures.

The DPI subagent programmer uses this structure to find out which variable
instances are to be returned in a DPI RESPONSE.

Context
“The pDPIpacket() function” on page 70
“The snmp_dpi_hdr structure” on page 86

struct dpi_get_packet {
char *object_p; /* ptr to OID string */
char *group_p; /* ptr to subtree(group)*/
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 85

The snmp_dpi_hdr structure

Format

Parameters
proto_major

The major protocol. For SNMP DPI, it is always 2.

proto_version
The DPI version.

proto_release
The DPI release.

packet_id
This field contains the packet ID of the DPI packet. When you create a
response to a request, the packet ID must be the same as that of the
request. This is taken care of if you use the mkDPIresponse() function.

packet_type
The type of DPI packet (parse tree) that you are dealing with.

See “DPI packet types” on page 95 for a list of currently defined DPI packet
types.

data_u
A union of pointers to the different types of data structures that are created
based on the packet_type field. The pointers themselves have names that
are self-explanatory.

The fields proto_major, proto_version, proto_release, and packet_id are basically for
DPI internal use, so the DPI programmer normally does not need to be concerned
about them.

Usage
The snmp_dpi_hdr structure is the anchor of a DPI parse tree. At the subagent
side, the snmp_dpi_hdr structure is normally created as a result of a call to
pDPIpacket().

struct snmp_dpi_hdr {
unsigned char proto_major; /* always 2: SNMP_DPI_PROTOCOL*/
unsigned char proto_version; /* DPI version */
unsigned char proto_release; /* DPI release */
unsigned short packet_id; /* 16-bit, DPI packet ID */
unsigned char packet_type; /* DPI packet type */
union {

snmp_dpi_reg_packet *reg_p;
snmp_dpi_ureg_packet *ureg_p;
snmp_dpi_get_packet *get_p;
snmp_dpi_next_packet *next_p;
snmp_dpi_next_packet *bulk_p;
snmp_dpi_set_packet *set_p;
snmp_dpi_resp_packet *resp_p;
snmp_dpi_trap_packet *trap_p;
snmp_dpi_open_packet *open_p;
snmp_dpi_close_packet *close_p;
unsigned char *any_p;

} data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

86 z/OS V1R4.0 CS: IP Programmer’s Reference

The DPI subagent programmer uses this structure to interrogate packets.
Depending on the packet_type, the pointer to the chain of one or more packet_type
specific structures that contain the actual packet data can be picked.

The storage for a DPI parse tree is always dynamically allocated. It is the
responsibility of the caller to free this parse tree when it is no longer needed. You
can use the fDPIparse() function to do that.

Note: Some mkDPIxxxx functions do free the parse tree that is passed to them. An
example is the mkDPIresponse() function.

Context
“The fDPIparse() function” on page 55
“The pDPIpacket() function” on page 70
“The snmp_dpi_close_packet structure” on page 84
“The snmp_dpi_get_packet structure” on page 85
“The snmp_dpi_next_packet structure” on page 88
“The snmp_dpi_resp_packet structure” on page 89
“The snmp_dpi_set_packet structure” on page 90
“The snmp_dpi_ureg_packet structure” on page 92

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 87

The snmp_dpi_next_packet structure

Format

Parameters
object_p

A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this GETNEXT request to be passed to this DPI
subagent. This subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_next_packet structure. If this next
field contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_next_packet structure represents a parse tree for a DPI GETNEXT
packet.

At the subagent side, the snmp_dpi_next_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GETNEXT. The snmp_dpi_hdr structure then contains a pointer to a
chain of one or more snmp_dpi_next_packet structures.

The DPI subagent programmer uses this structure to find out which variables
instances are to be returned in a DPI RESPONSE.

Context
“The pDPIpacket() function” on page 70
“The snmp_dpi_hdr structure” on page 86

struct dpi_next_packet {
char *object_p; /* ptr to OID (string) */
char *group_p; /* ptr to subtree(group)*/
char *instance_p;/* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

88 z/OS V1R4.0 CS: IP Programmer’s Reference

The snmp_dpi_resp_packet structure

Format

Parameters
error_code

The return code or the error code.

See “DPI RESPONSE error codes” on page 95 for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first varBind.
This field should be 0 if there is no error.

resp_priority
This is a redefinition of the error_index field. If the response is a response
to a DPI REGISTER request and the error_code is equal to
SNMP_ERROR_DPI_noError or
SNMP_ERROR_DPI_higherPriorityRegistered, then this field contains the
priority that was actually assigned. Otherwise, this field is set to 0 for
responses to a DPI REGISTER.

varBind_p
A pointer to the chain of one or more snmp_dpi_set_structures,
representing varBinds of the response. This field contains a NULL pointer if
there are no varBinds in the response.

Usage
The snmp_dpi_resp_packet structure represents a parse tree for a DPI RESPONSE
packet.

The snmp_dpi_resp_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_RESPONSE.
The snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_resp_packet
structure.

At the DPI subagent side, a DPI RESPONSE should only be expected at
initialization and termination time when the subagent has issued a DPI OPEN, DPI
REGISTER, or DPI UNREGISTER request.

The DPI programmer is advised to use the mkDPIresponse() function to prepare a
DPI RESPONSE packet.

Context
“The pDPIpacket() function” on page 70
“The mkDPIresponse() function” on page 63
“The snmp_dpi_set_packet structure” on page 90
“The snmp_dpi_hdr structure” on page 86

struct dpi_resp_packet {
char error_code; /* like: SNMP_ERROR_xxx */
unsigned long int error_index;/* 1st varBind in error */
#define resp_priority error_index /* if respons to register*/
struct dpi_set_packet *varBind_p; /* ptr to varBind, chain */

/* of dpi_set_packets */
};
typedef struct dpi_resp_packet snmp_dpi_resp_packet;
#define snmp_dpi_resp_packet_NULL_p ((snmp_dpi_resp_packet *)0)

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 89

The snmp_dpi_set_packet structure

Format

Parameters
object_p

A pointer to a null-terminated character string that represents the full object
identifier of the variable instance that is being accessed. It basically is a
concatenation of the fields group_p and instance_p. Using this field is not
recommended because it is only included for DPI Version 1 compatibility
and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the registered
subtree that caused this SET, COMMIT, or UNDO request to be passed to
this DPI subagent. The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece following the subtree part, of the object identifier of the
variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See “DPI SNMP value types” on page 96 for a list of currently defined value
types.

value_len
This is an unsigned 16-bit integer that specifies the length in octets of the
value pointed to by the value field. The length can be 0 if the value is of
type SNMP_TYPE_NULL.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of type SNMP_TYPE_NULL.

See “Value representation” on page 97 for information on how the data is
represented for the various value types.

next_p
A pointer to a possible next snmp_dpi_set_packet structure. If this next field
contains the NULL pointer, this is the end of the chain.

Usage
The snmp_dpi_set_packet structure represents a parse tree for a DPI SET request.

struct dpi_set_packet {
char *object_p; /* ptr to Object ID (string) */
char *group_p; /* ptr to subtree (group) */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* value type: SNMP_TYPE_xxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to the value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

90 z/OS V1R4.0 CS: IP Programmer’s Reference

The snmp_dpi_set_packet structure might be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_SET,
SNMP_DPI_COMMIT, or SNMP_DPI_UNDO. The snmp_dpi_hdr structure then
contains a pointer to a chain of one or more snmp_dpi_set_packet structures.

This structure can also be created with an mkDPIset() call, which is typically used
when preparing varBinds for a DPI RESPONSE packet.

Context
“The pDPIpacket() function” on page 70
“The mkDPIset() function” on page 65
“DPI SNMP value types” on page 96
“Value representation” on page 97
“The snmp_dpi_hdr structure” on page 86

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 91

The snmp_dpi_ureg_packet structure

Format

Parameters
reason_code

The reason for the unregister.

See “DPI UNREGISTER reason codes” on page 96 for reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree to
be unregistered. This subtree must have a trailing period.

next_p
A pointer to a possible next snmp_dpi_ureg_packet structure. If this next
field contains the NULL pointer, this is the end of the chain. Currently,
multiple unregister requests are not supported in one DPI packet, so this
field should always be 0.

Usage
The snmp_dpi_ureg_packet structure represents a parse tree for a DPI
UNREGISTER request.

The snmp_dpi_ureg_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_UNREGISTER. The snmp_dpi_hdr structure then contains a pointer to
an snmp_dpi_ureg_packet structure.

The DPI programmer is advised to use the mkDPIunregister() function to create a
DPI UNREGISTER packet.

Context
“The pDPIpacket() function” on page 70
“The mkDPIunregister() function” on page 69
“The snmp_dpi_hdr structure” on page 86

struct dpi_ureg_packet {
char reason_code;/* reason for unregister */
char *group_p; /* ptr to subtree(group)*/
struct dpi_ureg_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_ureg_packet snmp_dpi_ureg_packet;
#define snmp_dpi_ureg_packet_NULL_p ((snmp_dpi_ureg_packet *)0)

92 z/OS V1R4.0 CS: IP Programmer’s Reference

The snmp_dpi_u64 structure

Format

Note: This structure is supported only in SNMP Version 2.

Parameters
high The high order, most significant, 32 bits.

low The low order, least significant, 32 bits.

Usage
The snmp_dpi_u64 structure represents an unsigned 64-bit integer as needed for
values with a type of SNMP_TYPE_Counter64.

The snmp_dpi_u64 structure might be created as a result of a call to pDPIpacket().
This is the case if the DPI packet is of type SNMP_DPI_SET and one of the values
has a type of SNMP_TYPE_Counter64. The value_p pointer of the
snmp_dpi_set_packet structure will then point to an snmp_dpi_u64 structure.

The DPI programmer must also use an snmp_dpi_u64 structure as the parameter
to an mkDPIset() call if you want to create a value of type
SNMP_TYPE_Counter64.

Context
“The pDPIpacket() function” on page 70
“The snmp_dpi_set_packet structure” on page 90
“DPI SNMP value types” on page 96
“Value representation” on page 97

struct snmp_dpi_u64 { /* for unsigned 64-bit int */
unsigned long high; /* - high order 32 bits */
unsigned long low; /* - low order 32 bits */

};
typedef struct snmp_dpi_u64 snmp_dpi_u64;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 93

Character set selection
The version of DPI Version 2.0 shipped with SNMP requires use of the EBCDIC
character set. Any DisplayString MIB objects known to the agent (in its compiled
MIB) supplied with SNMP will have ASCII conversion handled by the agent. The
subagent will always deal with the values of these objects in EBCDIC. Any portion
of an instance identifier that is a DisplayString must be in ASCII. The agent does
not handle instance IDs.

When the DPI subagent sends a DPI OPEN packet, it must specify the character
set that it wants to use. The subagent here needs to know or determine in an
implementation dependent manner if the agent is running on a system with the
same character set as the subagent. If you connect to the agent at loopback or
your own machine, you might assume that you are using the same character set.

The DPI subagent has two choices:

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the platform on
which the agent that you connect to is running.

DPI_ASCII_CSET
Specifies that you want to use the ASCII character set. The agent will not
translate between ASCII and the native character set.

Although you can specify ASCII, the SNMP agent does not support it.

The DPI packets have a number of fields that are represented as strings. The fields
that must be represented in the selected character set are:

v The null-terminated string pointed to by the description_p, enterprise_p, group_p,
instance_p, and oid_p parameters in the various mkDPIxxxx(...) functions.

v The string pointed to by the value_p parameter in the mkDPIset(...) function, that
is if the value_type parameter specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

v The null-terminated string pointed to by the description_p, enterprise_p, group_p,
instance_p, and oid_p pointers in the various snmp_dpi_xxxx_packet structures.

v The string pointed to by the value_p pointer in the snmp_dpi_set_packet
structure, that is if the value_type field specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

Related information
“The mkDPIopen() function” on page 59

Constants, values, return codes, and include file
This section describes all the constants and names for values as they are defined
in the snmp_dpi.h include file (see “The snmp_dpi.h include file” on page 99):

“DPI CLOSE reason codes” on page 95
“DPI packet types” on page 95
“DPI RESPONSE error codes” on page 95
“DPI UNREGISTER reason codes” on page 96
“DPI SNMP value types” on page 96
“Value representation” on page 97
“Value ranges and limits” on page 98
“Return codes from DPI transport-related functions” on page 98

94 z/OS V1R4.0 CS: IP Programmer’s Reference

DPI CLOSE reason codes
The currently defined DPI CLOSE reason codes as defined in the snmp_dpi.h
include file are:

#define SNMP_CLOSE_otherReason 1
#define SNMP_CLOSE_goingDown 2
#define SNMP_CLOSE_unsupportedVersion 3
#define SNMP_CLOSE_protocolError 4
#define SNMP_CLOSE_authenticationFailure 5
#define SNMP_CLOSE_byManager 6
#define SNMP_CLOSE_timeout 7
#define SNMP_CLOSE_openError 8

These codes are used in the reason_code parameter for the mkDPIclose() function
and in the reason_code field in the snmp_dpi_close_packet structure.

Related information

“The snmp_dpi_close_packet structure” on page 84
“The mkDPIclose() function” on page 58

DPI packet types
The currently defined DPI packet types as defined in the snmp_dpi.h include file
are:

#define SNMP_DPI_GET 1
#define SNMP_DPI_GET_NEXT 2 /* old DPI Version 1.x style */
#define SNMP_DPI_GETNEXT 2
#define SNMP_DPI_SET 3
#define SNMP_DPI_TRAP 4
#define SNMP_DPI_RESPONSE 5
#define SNMP_DPI_REGISTER 6
#define SNMP_DPI_UNREGISTER 7
#define SNMP_DPI_OPEN 8
#define SNMP_DPI_CLOSE 9
#define SNMP_DPI_COMMIT 10
#define SNMP_DPI_UNDO 11
#define SNMP_DPI_GETBULK 12
#define SNMP_DPI_TRAPV2 13 /* reserved, not implmented */
#define SNMP_DPI_INFORM 14 /* reserved, not implemented */
#define SNMP_DPI_ARE_YOU_THERE 15

These packet types are used in the type parameter for the packet_type field in the
snmp_dpi_hdr structure.

Related information
“The snmp_dpi_hdr structure” on page 86

DPI RESPONSE error codes
In case of an error on an SNMP request like GET, GETNEXT, SET, COMMIT, or
UNDO, the RESPONSE can have one of these currently defined error codes. They
are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_noError 0
#define SNMP_ERROR_tooBig 1
#define SNMP_ERROR_noSuchName 2
#define SNMP_ERROR_badValue 3
#define SNMP_ERROR_readOnly 4
#define SNMP_ERROR_genErr 5

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 95

#define SNMP_ERROR_noAccess 6
#define SNMP_ERROR_wrongType 7
#define SNMP_ERROR_wrongLength 8
#define SNMP_ERROR_wrongEncoding 9
#define SNMP_ERROR_wrongValue 10
#define SNMP_ERROR_noCreation 11
#define SNMP_ERROR_inconsistentValue 12
#define SNMP_ERROR_resourceUnavailable 13
#define SNMP_ERROR_commitFailed 14
#define SNMP_ERROR_undoFailed 15
#define SNMP_ERROR_authorizationError 16
#define SNMP_ERROR_notWritable 17
#define SNMP_ERROR_inconsistentName 18

In case of an error on a DPI only request (OPEN, REGISTER, UNREGISTER,
ARE_YOU_THERE), the RESPONSE can have one of these currently defined error
codes. They are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_DPI_noError 0
#define SNMP_ERROR_DPI_otherError 101
#define SNMP_ERROR_DPI_notFound 102
#define SNMP_ERROR_DPI_alreadyRegistered 103
#define SNMP_ERROR_DPI_higherPriorityRegistered 104
#define SNMP_ERROR_DPI_mustOpenFirst 105
#define SNMP_ERROR_DPI_notAuthorized 106
#define SNMP_ERROR_DPI_viewSelectionNotSupported 107
#define SNMP_ERROR_DPI_getBulkSelectionNotSupported 108
#define SNMP_ERROR_DPI_duplicateSubAgentIdentifier 109
#define SNMP_ERROR_DPI_invalidDisplayString 110
#define SNMP_ERROR_DPI_characterSetSelectionNotSupported 111

These codes are used in the error_code parameter for the mkDPIresponse()
function and in the error_code field in the snmp_dpi_resp_packet structure.

Related information
“The snmp_dpi_resp_packet structure” on page 89
“The mkDPIresponse() function” on page 63

DPI UNREGISTER reason codes
These are the currently defined DPI UNREGISTER reason codes. They are defined
in the snmp_dpi.h include file:

#define SNMP_UNREGISTER_otherReason 1
#define SNMP_UNREGISTER_goingDown 2
#define SNMP_UNREGISTER_justUnregister 3
#define SNMP_UNREGISTER_newRegistration 4
#define SNMP_UNREGISTER_higherPriorityRegistered 5
#define SNMP_UNREGISTER_byManager 6
#define SNMP_UNREGISTER_timeout 7

These codes are used in the reason_code parameter for the mkDPIunregister()
function and in the reason_code field in the snmp_dpi_ureg_packet structure.

Related information
“The snmp_dpi_ureg_packet structure” on page 92
“The mkDPIunregister() function” on page 69

DPI SNMP value types
These are the currently defined value types as as defined in the snmp_dpi.h include
file:

96 z/OS V1R4.0 CS: IP Programmer’s Reference

#define SNMP_TYPE_MASK 0x7f /* mask to isolate type*/
#define SNMP_TYPE_Integer32 (128|1) /* 32-bit INTEGER */
#define SNMP_TYPE_OCTET_STRING 2 /* OCTET STRING */
#define SNMP_TYPE_OBJECT_IDENTIFIER 3 /* OBJECT IDENTIFIER */
#define SNMP_TYPE_NULL 4 /* NULL, no value */
#define SNMP_TYPE_IpAddress 5 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_Counter32 (128|6) /* 32-bit Counter */
#define SNMP_TYPE_Gauge32 (128|7) /* 32-bit Gauge */
#define SNMP_TYPE_TimeTicks (128|8) /* 32-bit TimeTicks in */

/* hundredths of a sec */
#define SNMP_TYPE_DisplayString 9 /* DisplayString (TC) */
#define SNMP_TYPE_BIT_STRING 10 /* BIT STRING */
#define SNMP_TYPE_NsapAddress 11 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_UInteger32 (128|12) /* 32-bit INTEGER */
#define SNMP_TYPE_Counter64 13 /* 64-bit Counter */
#define SNMP_TYPE_Opaque 14 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_noSuchObject 15 /* IMPLICIT NULL */
#define SNMP_TYPE_noSuchInstance 16 /* IMPLICIT NULL */
#define SNMP_TYPE_endOfMibView 17 /* IMPLICIT NULL */

These value types are used in the value_type parameter for the mkDPIset() function
and in the value_type field in the snmp_dpi_set_packet structure.

Related information
“The snmp_dpi_set_packet structure” on page 90
“The mkDPIset() function” on page 65
“Value representation” on page 97
“Value ranges and limits” on page 98

Value representation
Values in the snmp_dpi_set_packet structure are represented as follows:

v 32-bit integers are defined as long int or unsigned long int. A long int is assumed
to be 4 bytes.

v 64-bit integers are represented as an snmp_dpi_u64.

Unsigned 64 bit integers are only dealt with in SNMP. In a structure that has two
fields, the high order piece and the low order piece, each is of type unsigned
long int. These are assumed to be 4 bytes.

v Object identifiers are null-terminated strings in the selected character set,
representing the OID in ASN.1 dotted decimal notation. The length includes the
terminating NULL.

An ASCII example:
’312e332e362e312e322e312e312e312e3000’h

represents ″1.3.6.1.2.1.1.1.0″ which is sysDescr.0.

An EBCDIC example:
’f14bf34bf64bf14bf24bf14bf14bf14bf000’h

represents ″1.3.6.1.2.1.1.1.0″ which is sysDescr.0.

v DisplayStrings are in the selected character set. The length specifies the length
of the string.

An ASCII example:
’6162630d0a’h

represents ″abc\r\n″, no NULL.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 97

An EBCDIC example:
’8182830d25’h

represents ″abc\r\n″, no NULL.

v IpAddress and Opaque are implicit OCTET_STRING, so they are a sequence of
octets or bytes. This means, for instance, that the IP address is in network byte
order.

v NULL has a 0 length for the value, no value data, so a NULL pointer is returned
in the value_p field.

v noSuchObject, noSuchInstance, and endOfMibView are implicit NULL and are
represented as such.

v BIT_STRING is an OCTET_STRING of the form uubbbb...bb, where the first
octet (uu) is 0x00-0x07 and indicates the number of unused bits in the last octet
(bb). The bb octets represent the bit string itself, where bit 0 comes first and so
on.

Related information
“Value ranges and limits” on page 98

Value ranges and limits
The following rules apply to object IDs in ASN.1 notation:

v The object ID consists of 1 to 128 subIDs, which are separated by periods.

v Each subID is a positive number. No negative numbers are allowed.

v The value of each number cannot exceed 4294967295. This value is 2 to the
power of 32 minus 1.

v The valid values of the first subID are 0, 1, or 2.

v If the first subID has a value of 0 or 1, the second subID can only have a value
of 0 through 39.

The following rules apply to DisplayString:

v A DisplayString (Textual Convention) is basically an OCTET STRING in SNMP
terms.

v The maximum size of a DisplayString is 255 octets or bytes.

More information on the DPI SNMP value types can be found in the SNMP
Structure of Management Information (SMI) and SNMP Textual Conventions (TC)
RFCs. These two RFCs are RFC 1902 and RFC 1903.

Return codes from DPI transport-related functions

These are the currently defined values for the return codes from DPI
transport-related functions. They are defined in the snmp_dpi.h include file:
#define DPI_RC_OK 0 /* all OK, no error */
#define DPI_RC_NOK -1 /* some other error */
#define DPI_RC_NO_PORT -2 /* can’t determine DPIport */
#define DPI_RC_NO_CONNECTION -3 /* no connection to DPIagent*/
#define DPI_RC_EOF -4 /* EOF receivd on connection*/
#define DPI_RC_IO_ERROR -5 /* Some I/O error on connect*/
#define DPI_RC_INVALID_HANDLE -6 /* unknown/invalid handle */
#define DPI_RC_TIMEOUT -7 /* timeout occurred */

98 z/OS V1R4.0 CS: IP Programmer’s Reference

#define DPI_RC_PACKET_TOO_LARGE -8 /* packed too large, dropped*/
#define DPI_RC_UNSUPPORTED_DOMAIN -9 /*unsupported domain for connect*/
#define DPI_RC_INVALID_ARGUMENT -10 /*invalid argument passed*/

These values are used as return codes for the transport-related DPI functions.

Related information
“The DPIconnect_to_agent_TCP() function” on page 74
“The DPIconnect_to_agent_UNIXstream() function” on page 76
“The DPIawait_packet_from_agent() function” on page 72
“The DPIsend_packet_to_agent() function” on page 80

The snmp_dpi.h include file

Parameters
None

Description
The snmp_dpi.h include file defines the SNMP DPI API to the DPI subagent
programmer. It has all the function prototype statements, and it also has the
definitions for the snmp_dpi structures.

The same include file is used at the agent side, so you will see some definitions
that are unique to the agent side. Also, other functions or prototypes of functions
not implemented on SNMP might exist. Therefore, only use the API as it is
documented in this manual.

Related information
Macros, functions, structures, constants, and values defined in the snmp_dpi.h
include file are:

v “The DPIawait_packet_from_agent() function” on page 72

v “The DPIconnect_to_agent_TCP() function” on page 74

v “The DPIconnect_to_agent_UNIXstream() function” on page 76

v “The DPIdebug() function” on page 53

v “The DPIdisconnect_from_agent() function” on page 78

v “The DPI_PACKET_LEN() macro” on page 54

v “The DPIsend_packet_to_agent() function” on page 80

v “The fDPIparse() function” on page 55

v “The fDPIset() function” on page 56

v “The mkDPIAreYouThere() function” on page 57

v “The mkDPIclose() function” on page 58

v “The mkDPIopen() function” on page 59

v “The mkDPIregister() function” on page 61

v “The mkDPIresponse() function” on page 63

v “The mkDPIset() function” on page 65

v “The mkDPItrap() function” on page 67

v “The mkDPIunregister() function” on page 69

#include <snmp_dpi.h>

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 99

v “The pDPIpacket() function” on page 70

v “The snmp_dpi_close_packet structure” on page 84

v “The snmp_dpi_get_packet structure” on page 85

v “The snmp_dpi_next_packet structure” on page 88

v “The snmp_dpi_hdr structure” on page 86

v “The lookup_host() function” on page 82

v “The snmp_dpi_resp_packet structure” on page 89

v “The snmp_dpi_set_packet structure” on page 90

v “The snmp_dpi_ureg_packet structure” on page 92

v “DPI CLOSE reason codes” on page 95

v “DPI packet types” on page 95

v “DPI RESPONSE error codes” on page 95

v “DPI UNREGISTER reason codes” on page 96

v “DPI SNMP value types” on page 96

v “Character set selection” on page 94

A DPI subagent example
This is an example of a DPI version 2.0 subagent. The code is called
dpi_mvs_sample.c in the /usr/lpp/tcpip/samples directory.

Note: The example code in this document was copied from the sample file at the
time of the publication. There may be differences in the code presented and
the code that is shipped with the product. Always use the code provided in
the /usr/lpp/tcpip/samples directory as the authoritative sample code.

The DPI subagent example includes:
v “Overview of subagent processing” on page 100
v “Connecting to the agent” on page 102
v “Registering a subtree with the agent” on page 105
v “Processing requests from the agent” on page 106
v “Processing a GET request” on page 109
v “Processing a GETNEXT request” on page 112
v “Processing a SET/COMMIT/UNDO request” on page 116
v “Processing an UNREGISTER request” on page 119
v “Processing a CLOSE request” on page 119
v “Generating a TRAP” on page 119

Related information
“Subagent programming concepts” on page 41

Overview of subagent processing
This overview assumes that the subagent communicates with the agent over a TCP
connection. Other connection implementations are possible and, in that case, the
processing approach may be a bit different.

In this overview, the agent will be requested to send at most one varBind per DPI
packet, so there will be no need to loop through a list of varBinds. Potentially, you
may gain performance improvements if you allow for multiple varBinds per DPI
packet on GET, GETNEXT, SET requests, but to do so, your code will have to loop

100 z/OS V1R4.0 CS: IP Programmer’s Reference

through the varBind list and so it becomes more complicated. The DPI subagent
programmer can handle that once you understand the basics of the DPI API.

The following are the supported MIB variable definitions for DPI_SIMPLE:
DPISimple-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, snmpModules, enterprises

FROM SNMPv2-SMI
DisplayString

FROM SNMPv2-TC

ibm OBJECT IDENTIFIER ::= { enterprises 2 }
ibmDPI OBJECT IDENTIFIER ::= { ibm 2 }
dpi20MIB OBJECT IDENTIFIER ::= { ibmDPI 1 }

-- dpiSimpleMIB MODULE-IDENTITY
-- LAST-UPDATED "9401310000Z"
-- ORGANIZATION "IBM Research - T.J. Watson Research Center"
-- CONTACT-INFO " Bert Wijnen
-- Postal: IBM International Operations
-- Watsonweg 2
-- 1423 ND Uithoorn
-- The Netherlands
-- Tel: +31 2975 53316
-- Fax: +31 2975 62468
-- E-mail: wijnen@vnet.ibm.com
-- (IBM internal: wijnen at nlvm1)"
-- DESCRIPTION
-- "The MIB module describing DPI Simple Objects for
-- the dpi_samp.c program"
-- ::= { snmpModules x }

dpiSimpleMIB OBJECT IDENTIFIER ::= { dpi20MIB 5 }

dpiSimpleInteger OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A sample integer32 value"
::= { dpiSimpleMIB 1 }

dpiSimpleString OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION

"A sample Display String"
::= { dpiSimpleMIB 2 }

dpiSimpleCounter32 OBJECT-TYPE
SYNTAX Counter -- Counter32 is SNMPv2
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A sample 32-bit counter"
::= { dpiSimpleMIB 3 }

dpiSimpleCounter64 OBJECT-TYPE
SYNTAX Counter -- Counter64 is SNMPv2,

-- No SMI support for it yet
ACCESS read-only
STATUS mandatory

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 101

DESCRIPTION
"A sample 64-bit counter"

::= { dpiSimpleMIB 4 }
END

To make the code more readable, the following names have been defined in our
dpi_mvs_sample.c source file.
#define DPI_SIMPLE_SUBAGENT "1.3.6.1.4.1.2.2.1.5"
#define DPI_SIMPLE_MIB "1.3.6.1.4.1.2.2.1.5."
#define DPI_SIMPLE_INTEGER "1.0" /* dpiSimpleInteger.0 */
#define DPI_SIMPLE_STRING "2.0" /* dpiSimpleString.0 */
#define DPI_SIMPLE_COUNTER32 "3.0" /* dpiSimpleCounter32.0 */
#define DPI_SIMPLE_COUNTER64 "4.0" /* dpiSimpleCounter64.0 */

In addition, the following variables have been defined as global variables in our
dpi_mvs_sample.c source file.
static int /*handle has global scope */
int global_role=0; /*flag for debug macros */
static int instance_level = 0;
static long int value1 = 5;
#define value2_p cur_val_p /* writable object */
#define value2_len cur_val_len /* writable object */
static char *cur_val_p = (char *)0;
static char *new_val_p = (char *)0;
static char *old_val_p = (char *)0;
static unsigned long cur_val_len = 0;
static unsigned long new_val_len = 0;
static unsigned long old_val_len = 0;
static unsigned long value3 = 1;
#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
static snmp_dpi_u64 value4 = {0x80000000,1L};
#endif/*ndef EXCLUDE_SNMP_SMIv2_SUPPORT*/
static int unix_sock =0; /*default use TCP */
static unsigned short timeout = 3; /*default timeout */

Connecting to the agent
Before a subagent can receive or send any DPI packets from or to the SNMP
DPI-capable agent, it must connect to the agent and identify itself to the agent.

The following example code returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView must
be returned as defined by the SNMP Version 2 rules. You will need to specify:

v A host name or IP address in dotted decimal notation that specifies where the
agent is running. Often the name loopback can be used if the subagent runs on
the same system as the agent.

v A community name that is used to obtain the dpi TCP port from the agent.
Internally that is done by sending a regular SNMP GET request to the agent. In
an open environment, the well-known community name public can probably be
used.

The function returns a negative error code if an error occurs. If the connection setup
is successful, it returns a handle that represents the connection and that must be
used on subsequent calls to send or await DPI packets.

102 z/OS V1R4.0 CS: IP Programmer’s Reference

The second step is to identify the subagent to the agent. This is done by making a
DPI-OPEN packet, sending it to the agent, and then awaiting the response from the
agent. The agent may accept or deny the OPEN request. Making a DPI-OPEN
packet is done by calling mkDPIopen(), which expects the following parameters:

v A unique subagent identification (an object identifier).

v A description, which can be the NULL string (″″).

v Overall subagent timeout in seconds. The agent uses this value as a timeout
value for a response when it sends a request to the subagent. The agent may
have a maximum value for this timeout that will be used if you exceed it.

v The maximum number of varBinds per DPI packet that the subagent is willing or
is able to handle.

v The desired character set. In most cases you want to use the native character
set.

v Length of a password. A 0 means no password.

v Pointer to the password or NULL if no password. It depends on the agent if
subagents must specify a password to open up a connection.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

When the DPI-OPEN packet has been created, you must send it to the agent. You
can use the DPIsend_packet_to_agent() function, which expects the following
parameters:

v The handle of a connection from DPIconnect_to_agent_TCP.

v A pointer to the DPI packet from mkDPIopen.

v The length of the packet. The snmp_dpi.h include file provides a macro
DPI_PACKET_LEN that calculates the packet length of a DPI packet.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an appropriate
DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

Now wait for a response to the DPI-OPEN. To await such a response, you call the
DPIawait_packet_from_agent() function, which expects the following parameters:

v The handle of a connection from DPIconnect_to_agent_TCP.

v A timeout in seconds, which is the maximum time to wait for response.

v A pointer to a pointer, which will receive a pointer to a static buffer containing the
awaited DPI packet. If the system fails to receive a packet, a NULL pointer is
stored.

v A pointer to a long integer (32-bit), which will receive the length of the awaited
packet. If it fails, it will be set to 0.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an appropriate
DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

The last step is to ensure that you received a DPI-RESPONSE back from the
agent. If so, ensure that the agent accepted you as a valid subagent. This will be
shown by the error_code field in the DPI response packet.

The following example code establishes a connection and opens it by identifying
you to the agent.
static void do_connect_and_open(char *hostname_p, char *community_p)
{

unsigned char *packet_p;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 103

int rc;
unsigned long length;
snmp_dpi_hdr *hdr_p;

#ifdef MVS
__etoa(community_p); /* Translate to ASCII */
#endif /* MVS */

#ifndef DPI_MINIMAL_SUBAGENT
#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI

if (unix_sock) {
handle =

DPIconnect_to_agent_UNIXstream(/* (UNIX) connect to */
hostname_p, /* agent on this host */
community_p); /* snmp community name */

} else
#endif /* def INCLUDE_UNIX_DOMAIN_FOR_DPI */
#endif /* ndef DPI_MINIMAL_SUBAGENT */

handle =
DPIconnect_to_agent_TCP(/* (TCP) connect to agent */

hostname_p, /* on this host */
community_p); /* snmp community name */

if (handle < 0) exit(1); /* If it failed, exit */

packet_p = mkDPIopen(/* Make DPI-OPEN packet */
DPI_SIMPLE_SUBAGENT, /* Our identification */
"Simple DPI subAgent", /* description */
10L, /* Our overall timeout */
1L, /* max varBinds/packet */
DPI_NATIVE_CSET, /* native character set */
0L, /* password length */
(unsigned char *)0); /* ptr to password */

if (!packet_p) exit(1); /* If it failed, exit */

rc = DPIsend_packet_to_agent(/* send OPEN packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

rc = DPIawait_packet_from_agent(/* wait for response */
handle, /* on this connection */
10, /* timeout in seconds */
packet_p, /* receives ptr to packet */
length;); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it */

exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

} /* end of do_connect_and_open() */

104 z/OS V1R4.0 CS: IP Programmer’s Reference

Registering a subtree with the agent
After setting up a connection to the agent and identifying yourself, register one or
more MIB subtrees or instances for which you want to be responsible to handle
SNMP requests.

To do so, the subagent must create a DPI-REGISTER packet and send it to the
agent. The agent will then send a response to indicate success or failure of the
register request.

To create a DPI-REGISTER packet, the subagent uses a call to the mkDPIregister()
function, which expects these parameters:

v A timeout value in seconds for this subtree. If you specify 0, your overall timeout
value that was specified in DPI-OPEN is used. You can specify a different value
if you expect longer processing time for a specific subtree.

v A requested priority. Multiple subagents may register the same subtree at
different priorities. For example, 0 is better than 1 and so on. The agent
considers the subagent with the best priority to be the active subagent for the
subtree. If you specify -1, you are asking for the best priority available. If you
specify 0, you are asking for a better priority than any existing subagent may
already have.

v The MIB subtree or instance that you want to control. For object level
registration, this group ID must have a trailing dot. For instance level registration,
this group ID would simply have the instance number follow the object number
subtree.

v You have no choice in GETBULK processing. You must ask the agent to map a
GETBULK into multiple GETNEXT packets.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

Now send this DPI-REGISTER packet to the agent with the
DPIsend_packet_to_agent() function. This is similar to sending the DPI_OPEN
packet. Then wait for a response from the agent. Again, use the
DPIawait_packet_from_agent() function in the same way as you awaited a response
on the DPI-OPEN request. Once you have received the response, check the return
code to ensure that registration was successful.

The following code example demonstrates how to register one MIB subtree with the
agent.
static void do_register(void)
{

unsigned char *packet_p;
int rc;
unsigned long length;
snmp_dpi_hdr *hdr_p;
int i;
char buf 512 ;

for (i=0; i<4; i++) {

strcpy(buf,DPI_SIMPLE_MIB);
if (instance_level) {

switch (i) {
case 0:

strcat(buf,DPI_SIMPLE_INTEGER);
break;

case 1:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 105

strcat(buf,DPI_SIMPLE_STRING);
break;

case 2:
strcat(buf,DPI_SIMPLE_COUNTER32);
break;

case 3:
strcat(buf,DPI_SIMPLE_COUNTER64);
break;

} /* endswitch */
}
packet_p = mkDPIregister(/* Make DPIregister packet */

timeout, /* timeout in seconds */
0, /* requested priority */
buf, /* ptr to the subtree */
DPI_BULK_NO); /* Map GetBulk into GetNext*/

if (!packet_p) exit(1); /* If it failed, exit */

rc = DPIsend_packet_to_agent(/* send REGISTER packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

rc = DPIawait_packet_from_agent(/* wait for response */
handle, /* on this connection */
10, /* timeout in seconds */
&packet_p, /* receives ptr to packet */
&length); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it */

exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

if (!instance_level) break;

} /* endfor */

} /* end of do_register() */

Processing requests from the agent
After registering your sample MIB subtree with the agent, expect that SNMP
requests for that subtree will be passed back to you for processing. Since the
requests will arrive in the form of DPI packets on the connection that you have
established, go into a While loop to await DPI packets from the agent.

Because the subagent cannot know in advance which kind of packet arrives from
the agent, await a DPI packet (forever), then parse the packet, check the packet
type, and process the request based on the DPI packet type. A call to pDPIpacket,
which expects as parameter a pointer to the encoded or serialized DPI packet,
returns a pointer to a DPI parse tree. The pointer points to an snmp_dpi_hdr
structure which looks as follows:
struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_version;

106 z/OS V1R4.0 CS: IP Programmer’s Reference

unsigned char proto_release;
unsigned short packet_id;
unsigned char packet_type;
union {

snmp_dpi_reg_packet *reg_p;
snmp_dpi_ureg_packet *ureg_p;
snmp_dpi_get_packet *get_p;
snmp_dpi_next_packet *next_p;
snmp_dpi_next_packet *bulk_p;
snmp_dpi_set_packet *set_p;
snmp_dpi_resp_packet *resp_p;
snmp_dpi_trap_packet *trap_p;
snmp_dpi_open_packet *open_p;
snmp_dpi_close_packet *close_p;
unsigned char *any_p;

} data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

With the DPI parse tree, you decide how to process the DPI packet. The following
code example demonstrates the high level process of a DPI subagent.
main(int argc, char *argv[], char *envp][{}[][])
{

unsigned char *packet_p;
int i = 0;
int rc = 0;

#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent */
int debug = 0;

#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */
unsigned long length;
snmp_dpi_hdr *hdr_p;
char *hostname_p = NULL; /* @L1C*/
char *community_p = SNMP_COMMUNITY;
char *cmd_p = "";
char hostname[MAX_HOSTNAME_LEN+1]; /* @L1A*/

if (argc >= 1) cmd_p = argv[0];

for (i=1; i < argc; i++) {
if (strcmp(argv[i],"-h") == 0) {

if (i+1 >= argc) {
printf("Need hostname\n\n");
usage(cmd_p);

} /* endif */
hostname_p = argv[++i];

#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent */
} else if (strcmp(argv[i],"-c") == 0) {

if (i+1 >= argc) {
printf("Need community name\n\n");
usage(cmd_p);

} /* endif */
community_p = argv[++i];

#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI
} else if (strcmp(argv[i],"-unix") == 0) {

unix_sock = 1;
#endif /* def INCLUDE_UNIX_DOMAIN_FOR_DPI */

} else if (strcmp(argv[i],"-ireg") == 0) {
instance_level = 1;

} else if (strcmp(argv[i],"-d") == 0) {
if (i+1 >= argc) {

debug = 1;
continue;

}
if ((strlen(argv[i+1]) == 1) && isdigit(*argv[i+1])) {

i++;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 107

debug = atoi(argv[i]);
} else {

debug = 1;
} /* endif */

#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */
} else {

usage(cmd_p);
} /* endif */

} /* endfor */

#ifndef DPI_VERY_MINIMAL_SUBAGENT
if (debug) {

printf("\n%s - %s\n",__FILE__, VERSION);
DPIdebug(debug); /* turn on DPI dubugging */
timeout += 6; /* longer timeout please */

} /* endif */
#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */

if (hostname_p == NULL) { /* -h not specified. Try to
obtain local host name

@L1A*/
if (gethostname(hostname, MAX_HOSTNAME_LEN) != 0) {

printf("\ngethostname failed. "
"Restart with -h parameter.\n\n"); /* @L1A*/

exit(1); /* @L1A*/
}
else { /* gethostname worked @L1A*/

hostname_p = hostname; /* @L1A*/
} /* @L1A*/

} /* -h not specified @L1A*/

/* first init value2_p, our dpiSimpleString (DisplayString) */
/* since we treat it as display string keep terminating NULL */
value2_p = (char *) malloc(strlen("Initial String")+1);
if (value2_p) {

memcpy(value2_p,"Initial String",strlen("Initial String")+1);
value2_len = strlen("Initial String")+1;

} /* endif */

do_connect_and_open(hostname_p,
community_p); /* connect and DPI-OPEN */

do_register(); /* register our subtree */

do_trap(); /* issue a trap as sample */

while (rc == 0) { /* do forever */
rc = DPIawait_packet_from_agent(/* wait for a DPI packet */

handle, /* on this connection */
-1, /* wait forever */
&packet_p, /* receives ptr to packet */
&length); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p)/* If we fail to parse it */

exit(1); /* then exit */

switch(hdr_p->packet_type) { /* handle by DPI type */
case SNMP_DPI_GET:

rc = do_get(hdr_p,
hdr_p->data_u.get_p);

break;
case SNMP_DPI_GETNEXT:

rc = do_next(hdr_p,
hdr_p->data_u.next_p);

108 z/OS V1R4.0 CS: IP Programmer’s Reference

break;
case SNMP_DPI_SET:
case SNMP_DPI_COMMIT:
case SNMP_DPI_UNDO:

rc = do_set(hdr_p,
hdr_p->data_u.set_p);

break;
case SNMP_DPI_CLOSE:

rc = do_close(hdr_p,
hdr_p->data_u.close_p);

break;
case SNMP_DPI_UNREGISTER:

rc = do_unreg(hdr_p,
hdr_p->data_u.ureg_p);

break;
default:

printf("Unexpected DPI packet type %d\n",
hdr_p->packet_type);

rc = -1;
} /* endswitch */
if (rc) exit(1);

} /* endwhile */

return(0);
} /* end of main() */

Processing a GET request
When the DPI packet is parsed, the snmp_dpi_hdr structure will show in the
packet_type that this is an SNMP_DPI_GET packet. In that case, the packet_body
contains a pointer to a GET-varBind, which is represented in an
snmp_dpi_get_packet structure:
struct dpi_get_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

Assuming you have registered subtree 1.3.6.1.4.1.2.2.1.5 and a GET request
comes in for one variable (1.3.6.1.4.1.2.2.1.5.1.0) that is object 1 instance 0 in the
subtree, the fields in the snmp_dpi_get_packet would have pointers to:

object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a GET request, each one is represented in an
snmp_dpi_get_packet structure and all the snmp_dpi_get_packet structures are
chained using the next pointer. As long as the next pointer is not the
snmp_dpi_get_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you prepare a SET-varBind, which is represented in an snmp_dpi_set_packet
structure:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 109

unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind in
the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the subtree that you registered.

v A pointer to the rest of the OID; in other words, the piece that follows the
subtree.

v The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

v The length of the value. For integer type values, this must be a length of 4. Work
with 32-bit signed or unsigned integers except for the Counter64 type. For the
Counter64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. So
upon return you can dispose of our own pointers and allocated memory as you
please. If the call is successful, a pointer is returned as follows:

v To a new snmp_dpi_set_packet if it is the first or only varBind.

v To the existing snmp_dpi_set_packet that you passed on the call. In this case,
the new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, you can create a DPI RESPONSE
packet using the mkDPIresponse() function that expects these parameters:

v A pointer to an snmp_dpi_hdr. You should use the header of the parsed incoming
packet. It is used to copy the packet_id from the request into the response, such
that the agent can correlate the response to a request.

v A return code which is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a nonexisting object or instance is not considered an error. Instead,
you must pass a value type of SNMP_TYPE_noSuchObject or
SNMP_TYPE_noSuchInstance respectively. These two value types have an
implicit value of NULL, so you can pass a 0 length and a NULL pointer for the
value in this case.

v The index of the varBind in error starts counting at 1. Pass 0 if no error occurred,
or pass the proper index of the first varBind for which an error was detected.

v A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GET request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. You assume that there are no
errors in the request, but proper code should do the checking for that. For instance,

110 z/OS V1R4.0 CS: IP Programmer’s Reference

you return a noSuchInstance if the instance is not exactly what you expect and a
noSuchObject if the object instance_ID is greater than 3. However, there might be
no instance_ID at all and you should check for that, too.
static int do_get(snmp_dpi_hdr *hdr_p, snmp_dpi_get_packet *pack_p)
{

unsigned char *packet_p;
int rc;
snmp_dpi_set_packet *varBind_p;
char *i_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
if (pack_p->instance_p) {

printf("unexpected INSTANCE ptr \n");
return(-1);

}
i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);

} else {
i_p = pack_p->instance_p;

}

if (i_p && (strcmp(i_p,"1.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

} else if (i_p && (strcmp(i_p,"2.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

} else if (i_p && (strcmp(i_p,"3.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
} else if (i_p && (strcmp(i_p,"4.0") == 0)) {

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value *Apr23*/

} else if (i_p && (strcmp(i_p,"4") > 0)) {
#else

} else if (i_p && (strcmp(i_p,"3") > 0)) {
#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchObject, /* value type */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 111

0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} else {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchInstance,/* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} /* endif */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_get() */

Processing a GETNEXT request
When a DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_GETNEXT packet, and so the packet_body
contains a pointer to a GETNEXT-varBind, which is represented in an
snmp_dpi_next_packet structure:
struct dpi_next_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain*/

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

Assuming you have registered subtree dpiSimpleMIB and a GETNEXT arrives for
one variable (dpiSimpleInteger.0) that is object 1 instance 0 in the subtree, the
fields in the snmp_dpi_get_packet structure would have pointers to:
object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_next_packet_NULL_p

If there are multiple varBinds in a GETNEXT request, each one is represented in an
snmp_dpi_next_packet structure and all the snmp_dpi_next_packet structures are
chained by the next pointer. As long as the next pointer is not the
snmp_dpi_next_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
You must find out which OID is the one that lexicographically follows the one in the
request. It is that OID with its value that you must return as a response. Therefore,
you must now also set the proper OID in the response. When you are ready to

112 z/OS V1R4.0 CS: IP Programmer’s Reference

make a response that contains the new OID and the value of that variable, you
must prepare a SET-varBind which is represented in an snmp_dpi_set_packet:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or only varBind in the
chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the desired subtree.

v A pointer to the rest of the OID, in other words the piece that follows the subtree.

v The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

v The length of the value. For integer type values, this must be a length of 4. Work
with 32-bit signed or unsigned integers except for the Counter64 type. For
Counter 64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, you can dispose of your own pointers and allocated memory as you please.
If the call is successful, a pointer is returned as follows:

v A new snmp_dpi_set_packet if it is the first or only varBind.

v The existing snmp_dpi_set_packet that you passed on the call. In this case, the
new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, create a DPI RESPONSE packet
using the mkDPIresponse() function, which expects these parameters:

v A pointer to an snmp_dpi_hdr. Use the header of the parsed incoming packet. It
is used to copy the packet_id from the request into the response, such that the
agent can correlate the response to a request.

v A return code that is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a nonexisting object or instance is not considered an error. Instead,
pass the OID and value of the first OID that lexicographically follows the
nonexisting object or instance.

Reaching the end of the subtree is not considered an error. For example, if there
is no NEXT OID, this is not an error. In this situation, return the original OID as
received in the request and a value_type of SNMP_TYPE_endOfMibView. This
value_type has an implicit value of NULL, so you can pass a 0 length and a
NULL pointer for the value.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 113

v The index of the first varBind in error starts counting at 1. Pass 0 if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

v A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GETNEXT request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView is
returned as defined by the SNMP Version 2 rules.
static int do_next(snmp_dpi_hdr *hdr_p, snmp_dpi_next_packet *pack_p)
{

unsigned char *packet_p;
int rc;
unsigned long subid; /* subid is unsigned */
unsigned long instance; /* same with instance */
char *cp;
snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

/* If we have done instance level registration, then we should */
/* never get a getNext. Anyway, if we do, then we skip this and */
/* return an endOfMibView. */
if (instance_level) {

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_endOfMibView, /* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} else {

if (pack_p->instance_p) { /* we have an instance ID */
cp = pack_p->instance_p; /* pick up ptr */
subid = strtoul(cp, cp, 10); /* convert subid (object) */
if (*cp == ’.’) { /* followed by a dot ? */

cp++; /* point after it if yes */
instance=strtoul(cp,cp,10); /* convert real instance */

/* not that we need it, we */
subid++; /* only have instance 0, */

/* so NEXT is next object */
instance = 0; /* and always instance 0 */

} else { /* no real instance passed */
instance = 0; /* so we can use 0 */
if (subid == 0) subid++; /* if object 0, start at 1 */

} /* endif */
} else { /* no instance ID passed */

subid = 1; /* so do first object */
instance = 0; /* instance 0 (all we have)*/

} /* endif */

/* we have set subid and instance such that we can basically */
/* process the request as a GET now. Actually, we don’t even */
/* need instance, because all out object instances are zero. */

if (instance != 0) printf("Strange instance: %lu\n",instance);

114 z/OS V1R4.0 CS: IP Programmer’s Reference

switch (subid) {
case 1:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

break;
case 2:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

break;
case 3:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

break;
#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT

case 4: /* *Apr23*/
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value */

break; /* *Apr23*/
#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

default:
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_endOfMibView, /* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

break;
} /* endswitch */

} /* endif */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 115

DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_next() */

Processing a SET/COMMIT/UNDO request
These three requests can come in one of these sequences:
v SET, COMMIT
v SET, UNDO
v SET, COMMIT, UNDO

The normal sequence is SET and then COMMIT. When a SET request is received,
preparations must be made to accept the new value. For example, check that
request is for an existing object and instance, check the value type and contents to
be valid, and allocate memory, but do not yet make the change.

If there are no SET errors, the next received request will be a COMMIT request. It
is then that the change must be made, but keep enough information such that you
can UNDO the change later if you get a subsequent UNDO request. The latter may
happen if the agent discovers any errors with other subagents while processing
requests that belong to the same original SNMP SET packet. All the varBinds in the
same SNMP request PDU must be processed as if atomic.

When the DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_SET, SNMP_DPI_COMMIT, or
SNMP_DPI_UNDO packet. In that case, the packet_body contains a pointer to a
SET-varBind, represented in an snmp_dpi_set_packet structure. COMMIT and
UNDO have same varBind data as SET upon which they follow:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

Assuming we have a registered subtree dpiSimpleMIB and a SET request comes in
for one variable (dpiSimpleString.0) that is object 1 instance 0 in the subtree, and
also assuming that the agent knows about our compiled dpiSimpleMIB so that it
knows this is a DisplayString (as opposed to just an arbitrary OCTET_STRING), the
pointers in the snmp_dpi_set_packet structure would have pointers and values,
such as:
object_p -> "1.3.6.1.4.1.2.2.1.5.2.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "2.0"
value_type -> SNMP_TYPE_DisplayString
value_len -> 8
value_p -> pointer to the value to be set
next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a SET request, each one is represented in an
snmp_dpi_set_packet structure and all the snmp_dpi_set_packet structures are
chained by the next pointer. As long as the next pointer is not the
snmp_dpi_set_packet_NULL_p pointer, there are more varBinds in the list.

116 z/OS V1R4.0 CS: IP Programmer’s Reference

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you can prepare a new SET-varBind. However, by definition, the response to a
successful SET is exactly the same as the SET request. So there is no need to
return any varBinds. A response with SNMP_ERROR_noError and an index of zero
will do. If there is an error, a response with the SNMP_ERROR_xxxx error code
and an index pointing to the varBind in error (counting starts at 1) will do.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. The code
also does not check if the varBind in the COMMIT or UNDO is the same as that in
the SET request. A proper agent would make sure that that is the case, but a
proper subagent may want to verify that for itself. Only one check is done that this
is dpiSimpleString.0, and if it is not, a noCreation is returned.
static int do_set(snmp_dpi_hdr *hdr_p, snmp_dpi_set_packet *pack_p)
{

unsigned char *packet_p;
int rc;
int index = 0;
int error = SNMP_ERROR_noError;
snmp_dpi_set_packet *varBind_p;
char *i_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);

} else {
i_p = pack_p->instance_p;

}

if (!i_p ││ (strcmp(i_p,"2.0") != 0))
{

if (i_p &&
(strncmp(i_p,"1.",2) == 0))

{
error = SNMP_ERROR_notWritable;

} else if (i_p &&
(strncmp(i_p,"2.",2) == 0))

{
error = SNMP_ERROR_noCreation;

} else if (i_p &&
(strncmp(i_p,"3.",2) == 0))

{
error = SNMP_ERROR_notWritable;

} else {
error = SNMP_ERROR_noCreation;

} /* endif */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */
1, /* index is 1, 1st varBind */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 117

return(rc); /* return retcode */
}

switch (hdr_p->packet_type) {
case SNMP_DPI_SET:

if ((pack_p->value_type != SNMP_TYPE_DisplayString) &&
(pack_p->value_type != SNMP_TYPE_OCTET_STRING))

{ /* check octet string in case agent has no compiled MIB */
error = SNMP_ERROR_wrongType;
break; /* from switch */

} /* endif */
if (new_val_p) free(new_val_p); /* free these memory areas */
if (old_val_p) free(old_val_p); /* if we allocated any */
new_val_p = (char *)0;
old_val_p = (char *)0;
new_val_len = 0;
old_val_len = 0;

new_val_p = /* allocate memory for */
malloc(pack_p->value_len); /* new value to set */

if (new_val_p) { /* If success, then also */
memcpy(new_val_p, /* copy new value to our */

pack_p->value_p, /* own and newly allocated */
pack_p->value_len); /* memory area. */

new_val_len = pack_p->value_len;
} else { /* Else failed to malloc, */

error = SNMP_ERROR_genErr; /* so that is a genErr */
index = 1; /* at first varBind */

} /* endif */
break;

case SNMP_DPI_COMMIT:
old_val_p = cur_val_p; /* save old value for undo */
cur_val_p = new_val_p; /* make new value current */
new_val_p = (char *)0; /* keep only 1 ptr around */
old_val_len = cur_val_len; /* and keep lengths correct*/
cur_val_len = new_val_len;
new_val_len = 0;
/* may need to convert from ASCII to native if OCTET_STRING */
break;

case SNMP_DPI_UNDO:
if (new_val_p) { /* free allocated memory */

free(new_val_p);
new_val_p = (char *)0;
new_val_len = 0;

} /* endif */
if (old_val_p) {

if (cur_val_p) free(cur_val_p);
cur_val_p = old_val_p; /* reset to old value */
cur_val_len = old_val_len;
old_val_p = (char *)0;
old_val_len = 0;

} /* endif */
break;

} /* endswitch */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */
index, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */

118 z/OS V1R4.0 CS: IP Programmer’s Reference

DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_set() */

Processing an UNREGISTER request
An agent can send an UNREGISTER packet if some other subagent does a
register for the same subtree at a higher priority. An agent can also send an
UNREGISTER if, for example, an SNMP manager tells the agent to make the
subagent connection or the registered subtree not valid.

Here is an example of how to handle such a packet.
static int do_unreg(snmp_dpi_hdr *hdr_p, snmp_dpi_ureg_packet *pack_p)
{

printf("DPI UNREGISTER received from agent, reason=%d\n",
pack_p->reason_code);

printf(" subtree=%s\n",pack_p->group_p);
if (pack_p->reason_code ==

SNMP_UNREGISTER_higherPriorityRegistered)
{

return(0); /* keep waiting, we may regain subtree later */
} /* endif */

DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_unreg() */

Processing a CLOSE request
An agent can send a CLOSE packet if it encounters an error or for some other
reason. It can also do so if an SNMP MANAGER tells it to make the subagent
connection not valid.

Here is an example of how to handle such a packet.
static int do_close(snmp_dpi_hdr *hdr_p, snmp_dpi_close_packet *pack_p)
{

printf("DPI CLOSE received from agent, reason=%d\n",
pack_p->reason_code);

DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_close() */

Generating a TRAP
Issue a trap any time after a DPI OPEN was successful. To do so, you must create
a trap packet and send it to the agent. With the TRAP, you can pass different kinds
of varBinds, if you want. In this example, three varBinds are passed; one with
integer data, one with an octet string, and one with a counter. You can also pass an
Enterprise ID, but with DPI 2.0, the agent will use your subagent ID as the
enterprise ID if you do not pass one with the trap. In most cases, that will probably
not cause problems.

You must first prepare a varBind list chain that contains the three variables that you
want to pass along with the trap. To do so, prepare a chain of three
snmp_dpi_set_packet structures, which looks like:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 119

struct dpi_set_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind in
the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the desired subtree.

v A pointer to the rest of the OID, in other words, the piece that follows the
subtree.

v The value type of the value to be bound to the variable name. This must be one
of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

v The length of the value. For integer type values, this must be a length of 4.
Always work with 32-bit signed or unsigned integers except for the Counter64
type. For the Counter64 type, point to an snmp_dpi_u64 structure and pass the
length of that structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, you can dispose of your own pointers and allocated memory as you please.
If the call is successful, a pointer is returned as follows:

v To a new snmp_dpi_set_packet if it is the first or only varBind.

v To the existing snmp_dpi_set_packet that you passed on the call. In this case,
the new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, create a DPI TRAP packet. To do
so, use the mkDPItrap() function, which expects these parameters:

v The generic trap code. Use 6 for enterprise specific trap type.

v The specific trap type. This is a type that is defined by the MIB that you are
implementing. In our example you just use a 1.

v A pointer to a chain of varBinds or the NULL pointer if no varBinds need to be
passed with the trap.

v A pointer to the enterprise OID if you want to use a different enterprise ID than
the OID you used to identify yourself as a subagent at DPI-OPEN time.

The following code creates an enterprise-specific trap with specific type 1 and
passes 3 varBinds. The first varBind with object 1, instance 0, Integer32 value; the
second varBind with object 2, instance 0, Octet String; the third with Counter32. You
pass no enterprise ID.
static int do_trap(void)
{

unsigned char *packet_p;
int rc;

120 z/OS V1R4.0 CS: IP Programmer’s Reference

snmp_dpi_set_packet *varBind_p, *set_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
/* *Apr23*/

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

packet_p = mkDPItrap(/* Make DPItrap packet */
6, /* enterpriseSpecific */
1, /* specific type = 1 */
varBind_p, /* varBind data, and use */
(char *)0); /* default enterpriseID */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send TRAP packet */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 121

handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_trap() */

122 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 4. Running the sample SNMP DPI client program for
version 2.0

This section explains how to run the sample SNMP DPI client program,
dpi_mvs_sample.c, installed in /usr/lpp/tcpip/samples. It can be run using the SNMP
agents that support the SNMP-DPI interface as described in RFC 1592.

The sample implements a set of variables described by the DPISimple-MIB, a set of
objects in the IBM Research tree (under the 1.3.6.1.4.1.2.2.1.5 object ID prefix).
See “DPISimple-MIB descriptions” on page 124 for the object ID and type of each
object.

Using the sample program
The dpi_mvs_sample.c program accepts the following arguments:

? Explains the usage

-d n Sets the debug at level n

The range is 0 (for no messages) to 2 (for the most verbose). The default is
1, if you specify -d with no value.

0 No debug messages

1 Packet creation debug messages

2 Packet creation debug messages, and traces of packets sent and
received; the debug output goes to syslogd because the debug
used is dpi.

-h hostname
Specifies the host name or IP address where an SNMP DPI-capable agent
is running; the default is the local host.

-c community_name
Specifies the community name for the SNMP agent that is required to get
the dpiPort; the default is public.

-ireg Specifies that the subagent should do instance-level registration of MIB
objects.

-unix Specifies that the subagent should connect to the SNMP agent using a
UNIX stream socket instead of a TCP socket. You must also define
INCLUDE_UNIX_DOMAIN_FOR_DPI when compiling the subagent.

Compiling and linking the dpi_mvs_sample.c source code
The dpi_mvs_sample.c program is located in /usr/lpp/tcpip/samples.

You can specify the following compile time flags:

INCLUDE_UNIX_DOMAIN_FOR_DPI
Indicates that the sample subagent should be compiled to connect to the
agent using a UNIX Stream socket instead of a TCP connection.

MVS Indicates that compilation is for MVS, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

© Copyright IBM Corp. 1989, 2002 123

DPISimple-MIB descriptions
The following shows the MIB descriptions for DPISimple-MIB implemented by the
sample subagent.
dpi_mvs_sample.c supports these variables as an SNMP DPI
sample sub-agent
it also generates enterprise specific traps via DPI with these objects
Name OID Type Value
------------------ ----------------------- --------- --------
dpiSimpleInteger 1.3.6.1.4.1.2.2.1.5.1.0 integer 5
dpiSimpleString 1.3.6.1.4.1.2.2.1.5.2.0 string "Initial String"
dpiSimpleCounter32 1.3.6.1.4.1.2.2.1.5.3.0 counter32 1
dpiSimpleCounter64 1.3.6.1.4.1.2.2.1.5.4.0 counter64
X’8000000000000001’

Of the above, only dpiSimpleString can be changed with an SNMP SET request.

124 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 5. Resource Reservation Setup Protocol API (RAPI)

Introduction
The z/OS UNIX RSVP Agent includes an application programming interface (API)
for the Resource ReSerVation Protocol (RSVP), known as RAPI.

The RAPI interface is one realization of the generic API contained in the RSVP
functional specification (refer to RFC 2205). RSVP describes a resource reservation
setup protocol designed for an integrated services internet. RSVP provides
receiver-initiated setup of resource reservations for multicast or unicast data flows.
Refer to the RSVP applicability statement in reference RFC 2210 for more
information.

The RAPI interface is a set of C language bindings whose calls are defined in this
chapter. Applications use RAPI to request enhanced Quality of Service (QoS). The
RSVP agent then uses the RSVP protocol to propagate the QoS request through
the routers along the paths for the data flow. Each router may accept or deny the
request, depending upon the availability of resources. In the case of failure, the
RSVP agent will return the decision to the requesting application by way of RAPI.

RSVP is a receiver-oriented signaling protocol that enables applications to request
Quality of Service on an IP network. The types of Quality of Service requested by
those applications are defined by Integrated Services. RSVP signaling applies to
simplex unicast or multicast data flows. Although RSVP distinguishes senders from
receivers, the same application may act in both roles.

RSVP assigns QoS to specific IP data flows that can be either
multipoint-to-multipoint or point-to-point data flows, known as sessions. A session is
defined by a particular transport protocol, IP destination address, and destination
port. To receive data packets for a particular multicast session, an application must
join the corresponding IP multicast group.

A data source, or sender, is defined by an IP source address and a source port. A
given session may have multiple senders (S1, S2, ... Sn), and if the destination is a
multicast address, multiple receivers (R1, R2, ... Rn).

Under RSVP, QoS requests are made by the data receivers. A QoS request
contains a flowspec, together with a filter spec. The flowspec includes an Rspec,
which defines the desired QoS and is used to control the packet scheduling
mechanism in the router or host, and also a Tspec, which defines the traffic
expected by the receiver. The filter spec controls packet classification to determine
which sender data packets receive the corresponding QoS.

The detailed manner in which reservations from different receivers are shared in the
internet is controlled by a reservation parameter known as the reservation style.
The RSVP Functional Specification (refer to RFC 2205) contains a definition and
explanation of the different reservation styles. Also refer to the z/OS
Communications Server: IP Configuration Guide and z/OS Communications Server:
IP Diagnosis for more information on the RSVP agent.

© Copyright IBM Corp. 1989, 2002 125

API outline
Using the RAPI interface, an application uses the rapi_session() call to define an
API session for sending a single simplex data flow or receiving such a data flow.
The rapi_sender() call may then be used to register as a data sender, and the
rapi_reserve() call may be used to make a QoS reservation as a data receiver.

The rapi_sender() or rapi_reserve() calls may be repeated with different parameters
to dynamically modify the state at any time or they can be issued in null forms that
retract the corresponding registration. The application can call rapi_release() to
close the session and delete all of its resource reservations.

A single API session, defined by a single rapi_session() call, can define only one
sender at a time. More than one API session may be established for the same
RSVP session. For example, if an application sends multiple UDP data flows
distinguished by source port, it will call rapi_session() and rapi_sender() separately
for each of these flows.

The rapi_session() call allows the application to specify an upcall (or callback)
routine that will be invoked to signal RSVP state change and error events. There
are five types of events:

v RAPI_PATH_EVENT signals the arrival or change of path state.

v RAPI_RESV_EVENT signals the arrival or change of reservation state.

v RAPI_PATH_ERROR signals the corresponding path error.

v RAPI_RESV_CONFIRM signals the arrival of a CONFIRM message.

v RAPI_RESV_ERROR signals the corresponding reservation error.

A synchronous error in a RAPI routine returns an appropriate error code.
Asynchronous RSVP errors are delivered to the application by way of the RAPI
upcall routine.

Compiling and linking RAPI applications
To use the RAPI interface, an application must perform the following steps:

1. Include the <rapi.h> header file, which is available in the /usr/include directory.

2. Compile the application with the DLL compiler option. Refer to the z/OS C/C++
User’s Guide for more information on how to specify compiler options.

3. Include the RAPI definition side deck (rapi.x), which is available in the /usr/lib
directory, when prelinking or binding the application.

4. If the Binder is used instead of the C Prelinker, specify the Binder DYNAM=DLL
option. Refer to z/OS DFSMS Program Management for information on
specifying Binder options.

Running RAPI applications
At execution time, the RAPI application must have access to the RAPI DLL
(rapi.dll), which is available in the /usr/lib directory. Ensure that the LIBPATH
environment variable includes this directory when running the application. The RAPI
application must run with superuser authority to use RAPI.

126 z/OS V1R4.0 CS: IP Programmer’s Reference

Event upcall
An upcall is invoked by the asynchronous event mechanism. It executes the
function whose address was specified in the event_rtn parameter in the
rapi_session()call.

The event upcall function template is defined as follows:

rapi_event_rtn_t - Event upcall
#include <rapi.h>

typedef int rapi_event_rtn_t(
rapi_sid_t Sid, /* Session ID */
rapi_eventinfo_t EventType, /* Event type */
rapi_styleid_t Style, /* Reservation style */
int ErrorCode, /* Error event: code */
int ErrorValue, /* Error event: value */
rapi_addr_t *ErrorNode, /* Node detecting error */
unsigned int ErrorFlags, /* Error flags */
int FilterspecNo, /* number of filterspecs*/
rapi_filter_t *Filterspec_list,
int FlowspecNo, /* number of flowspecs */
rapi_flowspec_t *Flowspec_list,
int AdspecNo, /* number of adspecs */
rapi_adspec_t *Adspec_list,
void *Event_arg /* application argument */

);

Description
This is the template for the function address supplied on the rapi_session call. The
event upcall function is invoked from the asynchronous event mechanism when an
event occurs.

Parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

EventType
This parameter contains the upcall event type. See the description of this
parameter under “Result” on page 128.

Style This parameter contains the style of the reservation; it is nonzero only for a
RAPI_RESV_EVENT or RAPI_RESV_ERROR event.

ErrorCode, ErrorValue
These values encode the error cause, and they are set only for a
RAPI_PATH_ERROR or RAPI_RESV_ERROR event. See “Error handling”
on page 141 for interpretation of these values.

ErrorNode
This is the IP address of the node that detected the error, and it is set only
for a RAPI_PATH_ERROR or RAPI_RESV_ERROR event.

ErrorFlags
These error flags are set only for a RAPI_PATH_ERROR or
RAPI_RESV_ERROR event.

RAPI_ERRF_InPlace
The reservation failed, but another (presumably smaller)
reservation is still in place on the same interface.

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 127

RAPI_ERRF_NotGuilty
The reservation failed, but the request from this client was
merged with a larger reservation upstream, so this client
reservation might not have caused the failure.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a sequential
vector of RAPI filter spec or sender template objects. The number of objects
in this vector is specified in FilterSpecNo. If FilterSpecNo is 0, the
FilterSpec_list parameter will be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a sequential
vector of RAPI flowspec or Tspec objects. The number of objects in this
vector is specified in FlowspecNo. If FlowspecNo is 0, the Flowspec_list
parameter will be NULL.

Adspec_list, AdspecNo
The Adspec_list parameter is a pointer to an area containing a sequential
vector of RAPI adspec objects. The number of objects in this vector is
specified in AdspecNo. If AdspecNo is 0, the Adspec_list parameter will be
NULL.

Event_arg
This is the value supplied in the rapi_session() call.

Result
When the application upcall function returns, any areas pointed to by Flowspec_list,
FilterSpec_list, or Adspec_list become not valid for further reference. The upcall
function must copy any values it wants to save.

The specific parameters depend upon EventType, which may have one of the
following values:

RAPI_PATH_EVENT
A path event indicates that RSVP sender (Path) state from a remote node
has arrived or changed at the local node. A RAPI_PATH_EVENT event
containing the complete current list of senders (or possibly no senders, after
a path teardown) in the path state for the specified session will be triggered
whenever the path state changes.

FilterSpec_list, Flowspec_list, and Adspec_list will be of equal length, and
corresponding entries will contain sender templates, sender Tspecs, and
Adspecs, respectively, for all senders known at this node. A missing object
will generally be indicated by an empty RAPI object.

RAPI_PATH_EVENT events are enabled by the initial rapi_session() call.

RAPI_RESV_EVENT
A reservation event indicates that reservation state has arrived or changed
at the node, implying (but not assuring) that reservations have been
established or deleted along the entire data path to one or more receivers.
RAPI_RESV_EVENT upcalls containing the current reservation state for the
API session will be triggered whenever the reservation state changes.

Flowspec_list will either contain one flowspec object or be empty (if the
state has been torn down), and FilterSpec_list will contain zero or more
corresponding filter spec objects. Adspec_list will be empty.

128 z/OS V1R4.0 CS: IP Programmer’s Reference

RAPI_RESV_EVENT upcalls are enabled by a rapi_sender() call; the
sender template from the latter call will match the filter spec returned in the
upcall triggered by a reservation event.

RAPI_PATH_ERROR
A path error event indicates that an asynchronous error has been found in
the sender information specified in a rapi_sender() call.

The ErrorCode and ErrorValue parameters will specify the error.
FilterSpec_list and Flowspec_list will each contain one object, the sender
template and corresponding sender Tspec (if any) in error, while Adspec_list
will be empty. If there is no sender Tspec, the object in Flowspec_list will be
an empty RAPI object. The Adspec_list will be empty.

RAPI_PATH_ERROR events are enabled by a rapi_sender() call, and the
sender Tspec in that call will match the sender Tspec returned in a
subsequent upcall triggered by a RAPI_PATH_ERROR event.

RAPI_RESV_ERROR
A reservation error upcall indicates that an asynchronous reservation error
has occurred.

The ErrorCode and ErrorValue parameters will specify the error.
Flowspec_list will contain one flowspec, while FilterSpec_list may contain
zero or more corresponding filter specs. Adspec_list will be empty.

RAPI_RESV_ERROR events are enabled by a rapi_reserve() call.

RAPI_RESV_CONFIRM
A RAPI_RESV_CONFIRM event indicates that a reservation has been
made at least up to an intermediate merge point, and probably (but not
necessarily) all the way to at least one sender.

The parameters of a RAPI_RESV_CONFIRM event are the same as those
for a RAPI_RESV_EVENT event upcall.

The accompanying table summarizes the upcalls. n is a nonnegative integer.

Upcall Enabled by FilterSpecNo FlowspecNo AdspecNo

RAPI_PATH_EVENT rapi_session n n n

RAPI_PATH_ERROR rapi_sender 1 1 0

RAPI_RESV_EVENT rapi_sender n 1 or 0 0

RAPI_RESV_ERROR rapi_reserve n 1 0

RAPI_RESV_CONFIRM rapi_reserve 1 1 0

Client library services
The RSVP API provides the following client library calls:

v rapi_release()

v rapi_reserve()

v rapi_sender()

v rapi_session()

v rapi_version()

To use these calls, the application must include the file <rapi.h>. See “Header files”
on page 143 for more information on header files.

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 129

rapi_release - Remove a session
#include <rapi.h>

int rapi_release (rapi_sid_t Sid)

Description
The rapi_release() call removes the reservation, if any, and the state corresponding
to a given session handle. This call will be made implicitly if the application
terminates without closing its RSVP sessions.

Parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

Result
If the session handle is not valid, the call returns a corresponding RAPI error code;
otherwise, it returns 0.

rapi_reserve - Make, modify, or delete a reservation
#include <rapi.h>

int rapi_reserve(
rapi_sid_t Sid, /* Session ID */
int Flags, /* Flags */
rapi_addr_t *RHost, /* Receive host addr */
rapi_styleid_t StyleId, /* Style ID */
rapi_stylex_t *Style_Ext, /* Style extension */
rapi_policy_t *Rcvr_Policy, /* Receiver policy */
int FilterSpecNo, /* Number of filter specs */
rapi_filter_t *FilterSpec_list, /* List of filter specs */
int FlowspecNo, /* Number of flowspecs */
rapi_flowspec_t *Flowspec_list /* List of flowspecs */

)

Description
The rapi_reserve() function is called to make, modify, or delete a resource
reservation for a session. The call may be repeated with different parameters,
allowing the application to modify or remove the reservation; the latest call will take
precedence.

Parameters
Sid This parameter is the session ID for the session initiated by a

successful rapi_session() call.

Flags No flags are currently defined for this call.

RHost This parameter is used to define the interface address on which
data will be received for multicast flows. It is useful for a
multihomed host. If it is NULL or the host address is INADDR_ANY,
the default interface will be chosen.

StyleId This parameter specifies the reservation style ID (see
Flowspec_list, FlowspecNo).

Style_Ext This parameter must be NULL.

Rcvr_Policy This parameter must be NULL.

130 z/OS V1R4.0 CS: IP Programmer’s Reference

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a
sequential vector of RAPI filter spec objects. The number of objects
in this vector is specified in FilterSpecNo. If FilterSpecNo is 0, the
FilterSpec_list parameter is ignored and can be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a
sequential vector of RAPI flow spec objects. The number of objects
in this vector is specified in FlowspecNo. If FlowspecNo is 0, the
Flowspec_list parameter is ignored and can be NULL.

If FlowspecNo is 0, the call will remove the current reservations for
the specified session, and FilterSpec_list and Flowspec_list will be
ignored. Otherwise, the parameters depend upon the style, as
follows:

Wildcard Filter (WF)
Use StyleId = RAPI_RSTYLE_WILDCARD. The
Flowspec_list parameter may be NULL (to delete
the reservation) or else point to a single flowspec.
The FilterSpec_list parameter should be empty.

Fixed Filter (FF)
Use StyleId = RAPI_RSTYLE_FIXED. FilterSpecNo
must equal FlowspecNo. Entries in Flowspec_list
and FilterSpec_list parameters will correspond in
pairs.

Shared Explicit (SE)
Use StyleId = RAPI_RSTYLE_SE. The
Flowspec_list parameter should point to a single
flowspec. The FilterSpec_list parameter may point
to a list of any length.

Result
Depending upon the parameters, each call may or may not result in new admission
control calls, which could fail asynchronously.

If there is a synchronous error in this call, rapi_reserve() returns a RAPI error code;
otherwise, it returns 0.

Applications measure success in the form of errors returned when making QoS
requests. No final acknowledgment will occur.

An admission control failure (for example, refusal of the QoS request) is reported
asynchronously by an upcall of type RAPI_RESV_ERROR. A RSVP_Err_NO_PATH
error code indicates that RSVP state from one or more of the senders specified in
FilterSpec_list has not (yet) propagated all the way to the receiver; it may also
indicate that one or more of the specified senders has closed its API session and
that its RSVP state has been deleted from the routers.

rapi_sender - Specify sender parameters
#include <rapi.h>

int rapi_sender(
rapi_sid_t Sid, /* Session ID */
int Flags, /* Flags */

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 131

rapi_addr_t *LHost, /* Local Host */
rapi_filter_t *SenderTemplate, /* Sender template */
rapi_tspec_t *SenderTspec, /* Sender Tspec */
rapi_adspec_t *SenderAdspec, /* Sender Adspec */
rapi_policy_t *SenderPolicy, /* Sender policy data */
int TTL /* Multicast data TTL */

)

Description
An application must issue a rapi_sender() call if it intends to send a flow of data for
which receivers may make reservations. This call defines, redefines, or deletes the
parameters of that flow. A rapi_sender() call may be issued more than once for the
same API session; the most recent one takes precedence.

Once a successful rapi_sender() call has been made, the application may receive
upcalls of type RAPI_RESV_EVENT or RAPI_PATH_ERROR.

Parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

Flags No flags are currently defined for this call.

LHost This parameter may point to a rapi_addr_t structure specifying the IP
source address and, if applicable, the source port from which data will be
sent, or it may be NULL.

If the IP source address is INADDR_ANY, the API will use the default IP
address of the local host. This is sufficient unless the host is multihomed.
The port number may be zero if the protocol for the session does not have
ports.

A NULL LHost parameter indicates that the application wishes to withdraw
its registration as a sender. In this case, the following parameters will all be
ignored.

SenderTemplate
This parameter may be a pointer to a RAPI filter specification structure
specifying the format of data packets to be sent, or it may be NULL.

If this parameter is NULL, a sender template will be created internally from
the Dest and LHost parameters. The Dest parameter was supplied in an
earlier rapi_session() call. If a SenderTemplate parameter is present, the
(non-NULL) LHost parameter is ignored.

SenderTspec
This parameter is a pointer to a Tspec that defines the traffic that this
sender will create and must not be NULL.

SenderAdspec
This parameter must be NULL or unpredictable results may occur.

SenderPolicy
This parameter must be NULL.

TTL This parameter specifies the IP TTL (Time-to-Live) value with which
multicast data will be sent. It allows RSVP to send its control messages
with the same TTL scope as the data packets.

Result
If there is a synchronous error, rapi_sender() returns a RAPI error code; otherwise,
it returns 0.

132 z/OS V1R4.0 CS: IP Programmer’s Reference

rapi_session - Create a session
#include <rapi.h>

rapi_sid_t rapi_session(
rapi_addr_t *Dest, /* Session: (Dst addr, port) */
int Protid, /* Protocol Id */
int Flags, /* Flags */
rapi_event_rtn_t Event_rtn, /* Address of upcall routine */
void *Event_arg, /* App argument to upcall */
int *Errnop /* Place to return error code*/

)

Description
The rapi_session() call creates an API session.

After a successful rapi_session() call has been made, the application may receive
upcalls of type RAPI_PATH_EVENT for the API session.

Parameters
The parameters are as follows:

Dest This parameter points to a rapi_addr_t structure defining the
destination IP address and a port number to which data will be
sent. The Dest and Protid parameters define an RSVP session. If
the Protid specifies UDP or TCP transport, the port corresponds to
the appropriate transport port number.

Protid The IP protocol ID for the session. If it is omitted (that is, zero), 17
(UDP) is assumed.

Flags The valid values for Flags are as follows:

RAPI_USE_INTSERV
If set, IntServ formats are used in upcalls; otherwise, the
Simplified format is used.

Event_rtn
This parameter is a function typedef for an upcall function that will be
invoked to notify the application of RSVP errors and state change events.
Pending events cause the invocation of the upcall function. The application
must supply an upcall routine for event processing.

Event_arg
This parameter is an argument that will be passed to any invocation of the
upcall routine.

Errnop The address of an integer into which a RAPI error code will be returned. If
Errnop is NULL, no error code is returned.

Result
If the call succeeds, the rapi_session() call returns a nonzero session handle for
use in subsequent calls related to this API session.

If the call fails synchronously, it returns zero (RAPI_NULL_SID) and stores a RAPI
error code into an integer variable pointed to by the Errnop parameter.

Extended description
An application can have multiple API sessions registered for the same or different
RSVP sessions at the same time. There can be at most one sender associated with
each API session; however, an application can announce multiple senders for a
given RSVP session by announcing each sender in a separate API session.

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 133

Two API sessions for the same RSVP session, if they are receiving data, are
assumed to have joined the same multicast group and will receive the same data
packets.

rapi_version - RAPI version
#include <rapi.h>

int rapi_version(void)

Description
This call obtains the version of the interface. It may be used by an application to
adapt to different versions.

Result
This call returns a single integer that defines the version of the interface. The
returned value is composed of a major number and a minor number, encoded as
100 * major + minor

The API described in this chapter has major version number 6.

RAPI formatting routines
For convenience of applications, RAPI includes standard routines for displaying the
contents of RAPI objects.

These standard formatting routines are:

v rapi_fmt_adspec()

v rapi_fmt_filtspec()

v rapi_fmt_flowspec()

v rapi_fmt_tspec()

rapi_fmt_adspec - Format an adspec
#include <rapi.h>

void rapi_fmt_adspec(
rapi_adspec_t *adspecp, /* Addr of RAPI Adspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

Description
The rapi_fmt_adspec() call formats a given RAPI Adspec into a buffer of given
address and length. The output is truncated if the length is too small. If it is NULL,
this function returns without performing any formatting.

Parameters
adspecp

This parameter is a pointer to the Adspec to be formatted. If it is NULL, this
function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted output
will be placed. If the buffer is too small to contain the output, then the
formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

134 z/OS V1R4.0 CS: IP Programmer’s Reference

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

Result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible adspec output:
[GEN AS[brk=y hop=0 BW=0 lat=0 mtu=0]]

The output reflects the following code:

GEN Generic Adspec

rapi_fmt_filtspec - Format a filtspec
#include <rapi.h>

void rapi_fmt_filtspec(
rapi_filtspec_t *filtp, /* Addr of RAPI Filtspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

Description
The rapi_fmt_filtspec() call formats a given RAPI filter spec into a buffer of given
address and length. The output is truncated if the length is too small. If it is NULL,
this function returns without performing any formatting.

Parameters
filtp This parameter is a pointer to the Filtspec to be formatted. If it is NULL, this

function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted output
will be placed. If the buffer is too small to contain the output, then the
formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

Result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible filtspec output:
9.67.200.2/8000

showing the IP address and port.

rapi_fmt_flowspec - Format a flowspec
#include <rapi.h>

void rapi_fmt_flowspec(
rapi_flowspec_t *specp, /* Addr of RAPI flowspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 135

Description
The rapi_fmt_flowspec() call formats a given RAPI flowspec into a buffer of given
address and length. The output is truncated if the length is too small.

Parameters
specp This parameter is a pointer to the flowspec to be formatted. If it is NULL,

this function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted output
will be placed. If the buffer is too small to contain the output, then the
formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

Result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows the formatted output for a Controlled Load flowspec.
[CL TS[r=90000 b=6000 p=5.5e+06 m=1024 M=2048]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as
that shown for the Tspec p value.

The output reflects the following codes:

CL Controlled load

TS Tspec, listing the Tspec values

The following example shows the formatted output for a guaranteed flowspec.
[GUAR TS[r=90000 b=6000 p=5.5e+06 m=1024 M=2048] RS[R=90000 S=1]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as
that shown for the Tspec p value.

The output reflects the following codes:

GUAR Guaranteed

TS Tspec, listing the Tspec values

RS Rspec, listing the Rspec values

rapi_fmt_tspec - Format a tspec
#include <rapi.h>

void rapi_fmt_tspec(
rapi_tspec_t *tspecp, /* Addr of RAPI Tspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

Description
The rapi_fmt_tspec() call formats a given RAPI Tspec into a buffer of given address
and length. The output is truncated if the length is too small.

136 z/OS V1R4.0 CS: IP Programmer’s Reference

Parameters
tspecp

This parameter is a pointer to the Tspec to be formatted. If it is NULL, this
function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted output
will be placed. If the buffer is too small to contain the output, then the
formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

Result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible Tspec output:
[GEN TS[r=55000 b=6000 p=5.5e+06 m=1024 M=2048]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as
that shown for the Tspec p value.

The output reflects the following codes:

GEN Generic Tspec

TS Tspec, listing the Tspec values

RAPI objects
Flowspecs, filter specs, sender templates, and sender Tspecs are encoded as
variable-length RAPI objects.

Every RAPI object begins with a header of type rapi_hdr_t, which contains:

v The total length of the object in bytes

v The type

An empty object consists only of a header, with type 0 and length sizeof
(rapi_hdr_t).

Integrated services data structures are defined in RFC 2210, which describes the
use of the RSVP with the Controlled-Load and Guaranteed services. RSVP defines
several data objects which carry resource reservation information but are opaque to
RSVP itself. The usage and data format of those objects is given in RFC 2210.

Flowspecs
There are two formats for RAPI flowspecs. For further details, see “The <rapi.h>
header” on page 143.

RAPI_FLOWSTYPE_Simplified
This is a simplified format. It consists of a simple list of parameters needed for
either Guaranteed or Controlled Load service, using the service type
QOS_GUARANTEED or QOS_CNTR_LOAD, respectively.

The RAPI client library routines map this format to or from an appropriate Integrated
Services data structure.

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 137

RAPI_FLOWSTYPE_Intserv
This flowspec must be a fully formatted Integrated Services flowspec data structure.

Upcalls
In an upcall, a flowspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format
is used in upcalls.

Sender tspecs
There are two formats for RAPI Sender Tspecs. For further details, see “The
<rapi.h> header” on page 143.

RAPI_TSPECTYPE_Simplified
This is a simplified format consisting of a simple list of parameters with the service
type QOS_TSPEC. The RAPI client library routines map this format to or from an
appropriate Integrated Services data structure.

RAPI_TSPECTYPE_Intserv
This Tspec must be a fully formatted Integrated Services Tspec data structure.

Upcalls
In an upcall, a sender Tspec is by default delivered in simplified format. However, if
the RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ
format is used in upcalls.

Adspecs
There are two formats for RAPI Adspecs. For further details, see “The <rapi.h>
header” on page 143.

RAPI_ADSTYPE_Simplified
This is a simplified format, consisting of a list of Adspec parameters for all possible
services. The RAPI client library routines map this format to an appropriate
Integrated Services data structure.

RAPI_ADSTYPE_Intserv
This Adspec must be a fully formatted Integrated Services Adspec data structure.

Upcalls
In an upcall, an Adspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format
is used in upcalls.

Filter specs and sender templates
These objects have the following format:

RAPI_FILTERFORM_BASE This object consists of a socket address structure
defining the IP address and port.

Asynchronous event handling
The RAPI interface provides an asynchronous upcall mechanism using the select()
function. The upcall mechanism is a cooperative effort between RAPI and the using
application. The following shows the steps that must be taken by a RAPI application
to receive asynchronous upcalls:

138 z/OS V1R4.0 CS: IP Programmer’s Reference

1. The upcall function pointer must be specified on the rapi_session() call that
initiates the RAPI session. If the upcall function requires an argument, that also
must be specified on rapi_session(). The argument is defined as a pointer to
void.

2. The application must provide a means to be notified of asynchronous events.
The best way to do this is to create a thread using pthread_create().

3. The thread created above must issue the rapi_getfd() call to learn the file
descriptor of the socket used by RAPI for asynchronous communication.

4. The thread should then enter an endless loop to detect asynchronous events
using the select() call with the file descriptor learned using rapi_getfd(). When
an event is detected, the thread should call rapi_dispatch(), which then in turn
calls the upcall function synchronously.

The following example illustrates these steps. This example is for illustration
purposes only. It is not a complete program.
/***/
/* Issue a rapi_session() call to initialize RAPI. */
/***/
rapi_sid = rapi_session(&destination,

protocol,
0,
rapi_async, /* upcall function pointer */
0, /* no upcall argument */
&rc);

...
/***/
/* Create a pthread to handle RAPI upcalls. */
/***/
pthread_create(&thread_d,

NULL,
&rapi_th,
NULL);

...
/***/
/* Function: rapi_th() */
/***/
void *rapi_th(void *arg)
{

fd_set fds;
int fd;
struct timeval tv;

int rc = SUCCESSFUL;

/***/
/* This is the pthread created to handle RAPI upcalls. First, get */
/* the rapi socket descriptor to use on select(). */
/***/
pthread_mutex_lock(&rapi_lock);
fd = rapi_getfd(rapi_sid);
pthread_mutex_unlock(&rapi_lock);

if (fd > 0) {
/***/
/* Loop as long as all is well, waiting via select() for an */
/* asynchronous RAPI packet to arrive. */
/***/
while (rc == SUCCESSFUL) {

tv.tv_sec = 1;
tv.tv_usec = 0;

FD_ZERO(&fds);
FD_SET(fd, &fds);

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 139

switch(select(FD_SETSIZE, &fds, (fd_set *) NULL,
(fd_set *) NULL, &tv)) {

/***/
/* Bad return from select(). Get out. */
/***/
case -1:

rc = UNSUCCESSFUL;
break;

/***/
/* Time out on select(). Ignore. */
/***/
case 0:

break;

/***/
/* Dispatch data have arrived. Call the upcall function via */
/* rapi_dispatch(). */
/***/
default:

pthread_mutex_lock(&rapi_lock);
rc = rapi_dispatch();
pthread_mutex_unlock(&rapi_lock);
break;

}
}

}

/***/
/* Error on rapi_getfd(). */
/***/
else {

rc = UNSUCCESSFUL;
}

pthread_exit(NULL);
}

rapi_dispatch - Dispatch API event
#include <rapi.h>

int rapi_dispatch(void)

Description
The application should call this routine whenever a read event is signaled on a file
descriptor returned by rapi_getfd(). The rapi_dispatch() routine may be called at any
time, but it will generally have no effect unless there is a pending event.

Parameters
There are no parameters to this call.

Result
Calling this routine may result in one or more upcalls to the application from any of
the open API sessions known to this instance of the library.

If this call encounters an error, rapi_dispatch() returns a RAPI error code; otherwise,
it returns 0. See “RAPI error codes” on page 141 for a list of error codes.

rapi_getfd - Get file descriptor
#include <rapi.h>

int rapi_getfd (rapi_sid_t Sid)

140 z/OS V1R4.0 CS: IP Programmer’s Reference

Description
After a rapi_session() call has completed successfully and before rapi_release() has
been called, the application may call rapi_getfd() to obtain the file descriptor
associated with that session. When a read event is signaled on this file descriptor,
the application should call rapi_dispatch().

Parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

Result
If Sid is illegal or undefined, this call returns -1; otherwise, it returns the file
descriptor.

Error handling

Introduction
Errors can be detected synchronously or asynchronously.

When an error is detected synchronously, a RAPI error code is returned in the
Errnop argument of rapi_session(), or as the function return value of rapi_sender(),
rapi_reserve(), rapi_release(), or rapi_dispatch().

When an error is detected asynchronously, it is indicated by a RAPI_PATH_ERROR
or RAPI_RESV_ERROR event. An RSVP error code and error value are then
contained in the ErrorCode and ErrorValue arguments of the event_upcall()
function. In case of an API error (RSVP error code 20), a RAPI error code is
contained in the ErrorValue argument.

A description of RSVP error codes and values can be found in RFC 2205.

RAPI error codes
[RAPI_ERR_OK]

No error

[RAPI_ERR_INVAL]
Parameter not valid

[RAPI_ERR_MAXSESS]
Too many sessions

[RAPI_ERR_BADSID]
Session identity out of legal range

[RAPI_ERR_N_FFS]
Wrong filter number or flow number for style

[RAPI_ERR_BADSTYLE]
Illegal reservation style

[RAPI_ERR_SYSCALL]
A system error has occurred; its nature may be indicated by errno.

[RAPI_ERR_OVERFLOW]
Parameter list overflow

[RAPI_ERR_MEMFULL]
Not enough memory

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 141

[RAPI_ERR_NORSVP]
The RSVP agent is not active or is unable to respond.

[RAPI_ERR_OBJTYPE]
Object type not valid

[RAPI_ERR_OBJLEN]
Object length not valid

[RAPI_ERR_NOTSPEC]
No sender Tspec

[RAPI_ERR_INTSERV]
Integrated Services parameter format not valid

[RAPI_ERR_GPI_CONFLICT]
IPSEC: Conflicting C-type

[RAPI_ERR_BADPROTO]
IPSEC: Protocol not AH or ESP

[RAPI_ERR_BADVDPORT]
IPSEC: vDstPort is 0.

[RAPI_ERR_GPISESS]
IPSEC: Parameters for GPI_SESSION flag not valid, or other
parameter error

[RAPI_ERR_BADSEND]
Sender address not my interface

[RAPI_ERR_BADRECV]
Receiver address not my interface

[RAPI_ERR_BADSPORT]
Source port not valid: the source port is nonzero when the
destination port is 0.

[RAPI_ERR_UNSUPPORTED]
Unsupported feature

[RAPI_ERR_UNKNOWN]
Unknown error

[RAPI_ERR_BADSEND], [RAPI_ERR_BADRECV] and [RAPI_ERR_BADSPORT]
occur only asynchronously, as the ErrorValue when the ErrorCode is 20 (API error).

RSVP error codes

Value Symbol Meaning

0 RSVP_Err_NONE No error (confirmation)

1 RSVP_Err_ADMISSION Admission control failure

2 RSVP_Err_POLICY Policy control failure

3 RSVP_Err_NO_PATH No path information

4 RSVP_Err_NO_SENDER No sender information

5 RSVP_Err_BAD_STYLE Conflicting style

6 RSVP_Err_UNKNOWN_STYLE Unknown style

7 RSVP_Err_BAD_DSTPORT Conflicting destination port in
session

142 z/OS V1R4.0 CS: IP Programmer’s Reference

Value Symbol Meaning

8 RSVP_Err_BAD_SNDPORT Conflicting source port

9 Reserved

10 Reserved

11 Reserved

12 RSVP_Err_PREEMPTED Service preempted

13 RSVP_Err_UNKN_OBJ_CLASS Unknown object class

14 RSVP_Err_UNKNOWN_CTYPE Unknown object C-Type

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 Reserved

20 RSVP_Err_API_ERROR API error

21 RSVP_Err_TC_ERROR Traffic control error

22 RSVP_Err_TC_SYS_ERROR Traffic control system error

23 RSVP_Err_RSVP_SYS_ERROR RSVP system error

Header files

Integer and floating point types
Types u_int8_t, u_int16_t and u_int32_t, which appear in the <rapi.h> header file,
are unsigned integer types of length 8, 16, and 32 bits, respectively.

Type float32_t is a floating-point type of length 32 bits. It is defined by including the
<rapi.h> header file.

The <rapi.h> header
This header file contains the definitions of the RSVP API (RAPI) library calls.

Inclusion of this header may make available other symbols in addition to those
specified in this section.

General definitions
The following general definitions apply to the <rapi.h> header:

v Macro RAPI_VERSION is defined with value 100 * major + minor, where major is
the major version number and minor is the minor version number. The value of
RAPI_VERSION is returned by rapi_version().

v Type rapi_addr_t is defined for protocol addresses. It is defined to be struct
sockaddr.

v Enumeration qos_service_t is defined by typedef and has at least the following
members:

Member Meaning

QOS_CNTR_LOAD Controlled-load service

QOS_GUARANTEED Guaranteed service

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 143

Member Meaning

QOS_TSPEC Generic Tspec

v Enumeration rapi_format_t is defined by typedef and has at least the following
members:

Member Meaning

RAPI_ADSTYPE_Intserv Int-Serv format Adspec

RAPI_ADSTYPE_Simplified Simplified format Adspec

RAPI_EMPTY_OTYPE Empty object

RAPI_FILTERFORM_BASE Simple V4: Only sockaddr

RAPI_FLOWSTYPE_Intserv Int-Serv format flowspec

RAPI_FLOWSTYPE_Simplified Simplified format flowspec

RAPI_TSPECTYPE_Intserv Int-Serv format (sndr)Tspec

RAPI_TSPECTYPE_Simplified Simplified format (sndr)Tspec

v Type rapi_hdr_t is defined by typedef as a structure to represent a generic RAPI
object header. It has the following members, followed by type-specific contents:

Member Type Usage

form int Format

len unsigned int Actual length in bytes

Tspec definitions
The following Tspec definitions apply to the <rapi.h> header:

v Type qos_Tspec_body is defined by typedef as a structure with at least the
following members:

Member Type Usage

spec_Tspec_r float32_t Token bucket average rate in
bytes per second

spec_Tspec_b float32_t Token bucket depth in bytes

spec_Tspec_m u_int32_t Minimum policed unit in bytes

spec_Tspec_M u_int32_t Maximum packet size in
bytes

spec_Tspec_p float32_t Peak data rate in bytes per
second

v Type qos_tspecx_t is defined by typedef as a structure that contains the generic
Tspec parameters, and has at least the following members:

Member Type Usage

spec_type qos_service_t QoS_service_type

xtspec_Tspec qos_Tspec_body Tspec

v The following macros are defined with the values given below:

Macro Value

xtspec_r xtspec_Tspec.spec_Tspec_r

144 z/OS V1R4.0 CS: IP Programmer’s Reference

Macro Value

xtspec_b xtspec_Tspec.spec_Tspec_b

xtspec_m xtspec_Tspec.spec_Tspec_m

xtspec_M xtspec_Tspec.spec_Tspec_M

xtspec_p xtspec_Tspec.spec_Tspec_p

v Type rapi_tspec_t is defined by typedef as a structure to represent a Tspec
descriptor, and has at least the following members:

Member Type Usage

form rapi_format_t Tspec format

ISt IS_tspbody_t Int-serv format Tspec

len unsigned int Actual length in bytes

qosxt qos_tspecx_t Simplified format Tspec

tspecbody_u union

v The following macros are defined with the values given below:

Macro Value

tspecbody_qosx tspecbody_u.qosxt

tspecbody_IS tspecbody_u.ISt

Flowspec definitions
The following flowspec definitions apply to the <rapi.h> header:

v Type qos_flowspecx_t is defined by typedef as a structure that contains the union
of the parameters for controlled-load service and guaranteed service models, and
has at least the following members:

Member Type Usage

spec_type qos_service_t QoS_service_type

xspec_R float32_t Rate in bytes per second

xspec_S u_int32_t Slack term in microseconds

xspec_Tspec qos_Tspec_body Tspec

v The following macros are defined with the values given below:

Macro Value

xspec_r xspec_Tspec.spec_Tspec_r

xspec_b xspec_Tspec.spec_Tspec_b

xspec_m xspec_Tspec.spec_Tspec_m

xspec_M xspec_Tspec.spec_Tspec_M

xspec_p xspec_Tspec.spec_Tspec_p

v Type rapi_flowspec_t is defined by typedef as a structure to represent a
Flowspec descriptor, and has at least the following members:

Member Type Usage

len unsigned int Actual length in bytes

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 145

Member Type Usage

form rapi_format_t Flowspec format

IS IS_specbody_t Int-serv format flowspec

specbody_u union

qosx qos_flowspecx_t Simplified format flowspec

v The following macros are defined with the values given below:

Macro Value

specbody_qosx specbody_u.qosx

specbody_IS specbody_u.IS

Adspec definitions
The following adspec definitions apply to the <rapi.h> header:

v Type qos_adspecx_t is defined by typedef as a structure that contains the union
of all adspec parameters for controlled-load service and guaranteed service
models, and has at least the following members:

Member Type Usage

General path characterization parameters

xaspec_flags u_int8_t Flags(1)

xaspec_hopcnt u_int16_t

xaspec_path_bw float32_t

xaspec_min_latency u_int32_t

xaspec_composed_MTU u_int32_t

Controlled-load service Adspec parameters

xClaspec_flags u_int8_t Flags

xClaspec_override u_int8_t See note (2)

xClaspec_hopcnt u_int16_t

xClaspec_path_bw float32_t

xClaspec_min_latency u_int32_t

xClaspec_composed_MTU u_int32_t

Guaranteed service Adspec parameters

xGaspec_flags u_int8_t Flags

xGaspec_Ctot u_int32_t

xGaspec_Dtot u_int32_t

xGaspec_Csum u_int32_t

xGaspec_Dsum u_int32_t

xGaspec_override u_int8_t See note (2)

xGaspec_hopcnt u_int16_t

xGaspec_path_bw float32_t

xGaspec_min_latency u_int32_t

xGaspec_composed_MTU u_int32_t

146 z/OS V1R4.0 CS: IP Programmer’s Reference

Notes:

(1) FLG_IGN is not allowed; FLG_PARM is assumed.

(2) A value of 1 means ″override all generic parameters.″

v The following macros are defined with bitwise-distinct integral values for use in
the xaspec_flags xClaspec_flags and xGaspec_flags fields:

Macro Meaning

XASPEC_FLG_BRK Break bit: service unsupported in some
node.

XASPEC_FLG_IGN Ignore flag: Do not include this service.

XASPEC_FLG_PARM Parms-present flag: Include service
parameters.

v Type rapi_adspec_t is defined by typedef as a structure to represent an Adspec
descriptor, and has at least the following members:

Member Type Usage

adsbody_u union

adsx qos_adspecx_t Simplified format adspec

form rapi_format_t Adspec format

ISa IS_adsbody_t Int-serv format adspec

len unsigned int Actual length in bytes

v The following macros are defined with the values given below:

Macro Value

adspecbody_IS adsbody_u.ISa

adspecbody_qosx adsbody_u.adsx

Filter spec definitions
The following filter spec definitions apply to the <rapi.h> header:

v Type rapi_filter_base_t is defined by typedef as a structure that contains at least
the following member:

Member Type

sender struct sockaddr_in

v Type rapi_filter_t is defined by typedef as a structure that contains at least the
following members:

Member Type Usage

base rapi_filter_base_t

filt_u union

form rapi_format_t Filterspec format

len u_int32_t actual length in bytes

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 147

v The following macros are defined with the values given below:

Macro Value

rapi_filt4 filt_u.base.sender

rapi_filtbase4_addr rapi_filt4.sin_addr

rapi_filtbase4_port rapi_filt4.sin_port

Policy definitions
The following policy definitions apply to the <rapi.h> header:

Member Type

form rapi_format_t

len u_int32_t

pol_u union

Reservation style definitions
The following reservation style definitions apply to the <rapi.h> header:

v Enumeration rapi_styleid_t is defined by typedef for reservation style identifiers,
and has at least the following members:

Member Meaning

RAPI_RSTYLE_WILDCARD Reservation will be shared among a wildcard
selection of senders.

RAPI_RSTYLE_FIXED Reservation will not be shared and will be
dedicated to a particular sender.

RAPI_RSTYLE_SE Reservation will be shared among an explicit
list of senders.

v Type rapi_stylex_t is defined by typedef as void.

Function interface definitions
The following function interface definitions apply to the <rapi.h> header:

v Type rapi_sid_t is defined by typedef as unsigned int for RAPI client handles.

v Macro NULL_SID is defined for error returns from rapi_session().

v The following macro is defined and evaluated to a bitwise-distinct integral value:

Constant Meaning

RAPI_USE_INTSERV Use Int-Serv fmt in upcalls

Enumeration rapi_eventinfo_t is defined by typedef for RAPI event types, and
has at least the following members:

Member

RAPI_PATH_ERROR

RAPI_PATH_EVENT

RAPI_RESV_CONFIRM

RAPI_RESV_ERROR

RAPI_RESV_EVENT

148 z/OS V1R4.0 CS: IP Programmer’s Reference

v The following macros are defined and evaluate to distinct integral values:

Constant Meaning

RAPI_ERRF_InPlace Left reservation in place

RAPI_ERRF_NotGuilty This receiver not guilty

v Type rapi_event_rtn_t is defined by typedef as a function that conforms to the
prototype defined in the definition for event upcall.

v The following macros are defined and evaluate to distinct integral values for use
as RAPI error codes. Macro RAPI_ERR_OK (which indicates that there is no
error) evaluates to 0.

Error code

RAPI_ERR_BADPROTO

RAPI_ERR_BADRECV

RAPI_ERR_BADSEND

RAPI_ERR_BADSID

RAPI_ERR_BADSPORT

RAPI_ERR_BADSTYLE

RAPI_ERR_BADVDPORT

RAPI_ERR_GPI_CONFLICT

RAPI_ERR_GPISESS

RAPI_ERR_INTSERV

RAPI_ERR_INVAL

RAPI_ERR_MAXSESS

RAPI_ERR_MEMFULL

RAPI_ERR_N_FFS

RAPI_ERR_NORSVP

RAPI_ERR_NOTSPEC

RAPI_ERR_OBJLEN

RAPI_ERR_OBJTYPE

RAPI_ERR_OK

RAPI_ERR_OVERFLOW

RAPI_ERR_SYSCALL

RAPI_ERR_UNKNOWN

RAPI_ERR_UNSUPPORTED

v The following macros are defined and evaluate to the RSVP error code values as
defined in “RSVP error codes” on page 142:

Error code

RSVP_Err_ADMISSION

RSVP_Err_API_ERROR

RSVP_Err_BAD_DSTPORT

RSVP_Err_BAD_SNDPORT

RSVP_Err_BAD_STYLE

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 149

Error code

RSVP_Err_NONE

RSVP_Err_NO_PATH

RSVP_Err_NO_SENDER

RSVP_Err_POLICY

RSVP_Err_PREEMPTED

RSVP_Err_RSVP_SYS_ERROR

RSVP_Err_TC_ERROR

RSVP_Err_TC_SYS_ERROR

RSVP_Err_UNKN_OBJ_CLASS

RSVP_Err_UNKNOWN_STYLE

RSVP_Err_UNKNOWN_CTYPE

Integrated services data structures and macros
This section defines the integrated services (refer to RFC 2210) data formats. The
RAPI interface was designed to allow an application to specify either the int-serv
format of a flowspec, Tspec, or adspec, or a simplified version of each.

The simplified versions allow almost any int-serv version to be generated, but there
may be circumstances in which this is not adequate. For example, more general
forms of flowspec, containing more than one service, may be defined in the future
(so that in case the Resv message reaches a node that does not implement service
A, it can drop back to service B). Allowing an application to specify the body of an
arbitrary int-serv data object allows for such contingencies.

Future versions of this specification may change the definitions in this section.
Application writers are advised not to use these definitions except when absolutely
necessary.

Notes:

1. The values in the data structures defined in this section are in host byte order.

2. Inclusion of this header may make available other symbols in addition to those
specified in this section.

General definitions
The following general definitions apply to the integrated services data structures
and macros:

v The following macro is defined with the value given below:

Macro Value Usage

wordsof(x) (((x)+3)/4) number of 32-bit words

v The following macros are defined with the following integer values for service
numbers:

Note: The values are protocol values defined in RFC 2211, RFC 2212, and RFC
2215.

Macro Value

GENERAL_INFO 1

150 z/OS V1R4.0 CS: IP Programmer’s Reference

Macro Value

GUARANTEED_SERV 2

CONTROLLED_LOAD_SERV 5

v Enumeration int_serv_wkp is defined for well-known parameter identities and has
at least the following members with the following integer values:

Note: The values are protocol values defined in RFC 2215.

Member Value Meaning

IS_WKP_HOP_CNT 4 Number of network nodes
supporting Integrated
Services along the flow path

IS_WKP_PATH_BW 6 Available bandwidth in bytes
per second throughout the
flow path

IS_WKP_MIN_LATENCY 8 Minimum end-to-end latency
in microseconds

IS_WKP_COMPOSED_MTU 10 Maximum transmission unit
without causing IP
fragmentation along the flow
path

IS_WKP_TB_TSPEC 127 Token-bucket TSPEC
parameter

v The following macros are defined with the values given below:

Macro Value

INTSERV_VERS_MASK 0xf0

INTSERV_VERSION0 0

Intserv_Version(x) (((x)&ismh_version &INTSERV_VERS_MASK)>>4)

Intserv_Version_OK(x) (((x)->ismh_version &INTSERV_VERS_MASK)==
\INTSERV_VERSION0)

v Type IS_main_hdr_t is defined by typedef as a structure to represent an
Integrated Services main header, and has at least the following members:

Member Type Usage

ismh_len32b u_int16_t Number of 32-bit words
excluding this header

ismh_unused u_int8_t

ismh_version u_int8_t Version

v Type IS_serv_hdr_t is defined by typedef as a structure to represent an
Integrated Services service element header, and has at least the following
members:

Member Type Usage

issh_flags u_int8_t Flag byte

issh_len32b u_int16_t Number of 32-bit words
excluding this header

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 151

Member Type Usage

issh_service u_int8_t Service number

v The following macro is defined with the value given below to indicate the break
bit in the IS_serv_hdr_t flag byte:

Macro Value

ISSH_BREAK_BIT 0x80

v Type IS_parm_hdr_t is defined by typedef as a structure to represent an
Integrated Services parameter element header, and has at least the following
members:

Member Type Usage

isph_flags u_int8_t Flags

isph_len32b u_int16_t Number of 32-bit words
excluding this header

isph_parm_num u_int8_t Parameter number

v The following macro is defined with the value given below to indicate the not
valid bit in the IS_parm_hdr_t flag byte:

Macro Value

ISPH_FLG_INV 0x80

v The following macros are defined with the values given below:

Macro Value

Next_Main_Hdr(p) (IS_main_hdr_t *)((u_int32_t
*)(p)+1+(p)->ismh_len32b)

Next_Parm_Hdr(p) (IS_parm_hdr_t *)((u_int32_t
*)(p)+1+(p)->isph_len32b)

Next_Serv_Hdr(p) (IS_serv_hdr_t *)((u_int32_t
*)(p)+1+(p)->issh_len32b)

Non_Is_Hop ((IS_serv_hdr_t *)p)->issh_flags &
ISSH_BREAK_BIT

Set_Break_Bit(p) ((IS_serv_hdr_t *)p)-
>issh_flags|=ISSH_BREAK_BIT

Set_Main_Hdr(p, len) {(p)->ismh_version = INTSERV_VERSION0;
\ (p)->ismh_unused = 0; \ (p)->ismh_len32b
= wordsof(len); }

Set_Parm_Hdr(p, id, len) {(p)->isph_parm_num = (id); \ (p)->isph_flags
= 0; \ (p)->isph_len32b = wordsof(len); }

Set_Serv_Hdr(p, s, len) {(p)->issh_service = (s); \ (p)->issh_flags = 0;
\ (p)->issh_len32b = wordsof(len); }

Generic tspec format
The following generic tspec formats apply to the integrated services data structures
and macros:

v The following macros define constraints on the token bucket parameters for both
the controlled-load and guaranteed service. These constraints are imposed by

152 z/OS V1R4.0 CS: IP Programmer’s Reference

the respective service specifications and are not an indication of what minimum
or maximum values a RAPI implementation will accept.

The following macros are defined with values of type float32_t:

Macro Usage Value

TB_MIN_RATE Minimum token
bucket rate

1 byte per second

TB_MAX_RATE Maximum token
bucket rate

40 terabytes per second

TB_MIN_DEPTH Minimum token
bucket depth

1 byte

TB_MAX_DEPTH Maximum token
bucket depth

250 gigabytes

TB_MAX_PEAK Maximum peak rate Positive infinity, defined as an IEEE
single-precision floating-point number with
an exponent of all ones (255) and a sign
and mantissa of all zeros (refer to RFC
1832).

v Type TB_Tsp_parms_t is defined by typedef as a structure to represent generic
Tspec parameters, and has at least the following members:

Member Type Usage

TB_Tspec_b float32_t Token bucket depth in bytes

TB_Tspec_m u_int32_t Minimum policed unit in bytes

TB_Tspec_M u_int32_t Maximum packet size in
bytes

TB_Tspec_p float32_t Peak data rate in bytes per
second

TB_Tspec_r float32_t Token bucket rate in bytes
per second

v Type gen_Tspec_t is defined by typedef as a structure to represent a generic
Tspec, and has at least the following members:

Member Type Usage

gen_Tspec_parms TB_Tsp_parms_t

gen_Tspec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC,)

gen_Tspec_serv_hdr IS_serv_hdr_t (GENERAL_INFO, length)

v The following macros are defined with the values given below:

Macro Value

gtspec_b gen_Tspec_parms.TB_Tspec_b

gtspec_flags gen_Tspec_parm_hdr.isph_flags

gtspec_len (sizeof(gen_Tspec_t) - sizeof(IS_serv_hdr_t))

gtspec_len32b gen_Tspec_parm_hdr.isph_len32b

gtspec_m gen_Tspec_parms.TB_Tspec_m

gtspec_M gen_Tspec_parms.TB_Tspec_M

gtspec_p gen_Tspec_parms.TB_Tspec_p

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 153

Macro Value

gtspec_parmno gen_Tspec_parm_hdr.isph_parm_num

gtspec_r gen_Tspec_parms.TB_Tspec_r

Formats for controlled-load service
The following formats for controlled-load service apply to the integrated services
data structures and macros:

v Type CL_flowspec_t is defined by typedef as a structure to represent a
controlled-load Flowspec, and has at least the following members:

Member Type Usage

CL_spec_parms TB_Tsp_parms_t

CL_spec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC)

CL_spec_serv_hdr IS_serv_hdr_t (CONTROLLED_LOAD_SERV,
0,len)

v The following macros are defined with the values given below:

Macro Value

CLspec_b CL_spec_parms.TB_Tspec_b

CLspec_flags CL_spec_parm_hdr.isph_flags

CLspec_len (sizeof(CL_flowspec_t) -
sizeof(IS_serv_hdr_t))

CLspec_len32b CL_spec_parm_hdr.isph_len32b

CLspec_m CL_spec_parms.TB_Tspec_m

CLspec_M CL_spec_parms.TB_Tspec_M

CLspec_p CL_spec_parms.TB_Tspec_p

CLspec_parmno CL_spec_parm_hdr.isph_parm_num

CLspec_r CL_spec_parms.TB_Tspec_r

Formats for guaranteed service
The following formats for guaranteed service apply to the integrated services data
structures and macros:

v The following enumeration is defined for service-specific parameter identifiers
and has at least the following members with the following values:

Member Value

IS_GUAR_RSPEC 130

GUAR_ADSPARM_C 131

GUAR_ADSPARM_D 132

GUAR_ADSPARM_Ctot 133

GUAR_ADSPARM_Dtot 134

GUAR_ADSPARM_Csum 135

GUAR_ADSPARM_Dsum 136

v Type guar_Rspec_t is defined by typedef as a structure for guaranteed Rspec
parameters, and has at least the following members:

154 z/OS V1R4.0 CS: IP Programmer’s Reference

Member Type Usage

Guar_R float32_t Guaranteed rate in bytes per
second

Guar_S u_int32_t Slack term in microseconds

v Type Guar_flowspec_t is defined by typedef as a structure to represent a
guaranteed Flowspec, and has at least the following members:

Member Type Usage

Guar_Rspec guar_Rspec_t Guaranteed rate in Bytes per
second

Guar_Rspec_hdr IS_parm_hdr_t (IS_GUAR_RSPEC)

Guar_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, 0,
length)

Guar_Tspec_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC)

Guar_Tspec_parms TB_Tsp_parms_t GENERIC Tspec parameters

v The following macros are defined with the values given below:

Macro Value

Gspec_b Guar_Tspec_parms.TB_Tspec_b

Gspec_len (sizeof(Guar_flowspec_t) -
sizeof(IS_serv_hdr_t))

Gspec_m Guar_Tspec_parms.TB_Tspec_m

Gspec_M Guar_Tspec_parms.TB_Tspec_M

Gspec_p Guar_Tspec_parms.TB_Tspec_p

Gspec_r Guar_Tspec_parms.TB_Tspec_r

Gspec_R Guar_Rspec.Guar_R

Gspec_R_flags Guar_Rspec_hdr.isph_flags

Gspec_R_len32b Guar_Rspec_hdr.isph_len32b

Gspec_R_parmno Guar_Rspec_hdr.isph_parm_num

Gspec_S Guar_Rspec.Guar_S

Gspec_T_flags Guar_Tspec_hdr.isph_flags

Gspec_T_len32b Guar_Tspec_hdr.isph_len32b

Gspec_T_parmno Guar_Tspec_hdr.isph_parm_num

v Type Gads_parms_t is defined by typedef as a structure for guaranteed Adspec
parameters, and has the following members, which may be followed by override
general parameter values:

Member Type Usage

Gads_Csum u_int32_t

Gads_Csum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Csum)

Gads_Ctot u_int32_t

Gads_Ctot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Ctot)

Gads_Dsum u_int32_t

Gads_Dsum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dsum)

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 155

Member Type Usage

Gads_Dtot u_int32_t

Gads_Dtot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dtot)

Gads_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, x,
len)

Basic adspec pieces
The following basic adspec pieces apply to the integrated services data structures
and macros:

v Type genparm_parms_t is defined by typedef as a structure for general path
characterization parameters, and has at least the following members:

Member Type Usage

gen_parm_compmtu_hdr IS_parm_hdr_t (IS_WKP_COMPOSED_MTU)

gen_parm_composed_MTU u_int32_t

gen_parm_hdr IS_serv_hdr_t (GENERAL_INFO, len)

gen_parm_hopcnt u_int32_t

gen_parm_hopcnt_hdr IS_parm_hdr_t (IS_WKP_HOP_CNT)

gen_parm_min_latency u_int32_t

gen_parm_minlat_hdr IS_parm_hdr_t (IS_WKP_MIN_LATENCY)

gen_parm_path_bw float32_t

gen_parm_pathbw_hdr IS_parm_hdr_t (IS_WKP_PATH_BW)

v Type Min_adspec_t is defined by typedef as a structure to represent a minimal
Adspec per-service fragment (an empty service header) and has at least the
following member.

Member Type Usage

mads_hdr IS_serv_hdr_t (<service>, 1, len=0)

Integrated services flowspec
The following integrated services flowspecs apply to the integrated services data
structures and macros:

v Type IS_specbody_t is defined by typedef as a structure to represent an
integrated services flowspec, and has at least the following members:

Member Type Usage

CL_spec CL_flowspec_t Controlled-load service

G_spec Guar_flowspec_t Guaranteed service

spec_mh IS_main_hdr_t

spec_u union

v The following macros are defined with the values given below:

Macro Value

ISmh_len32b spec_mh.ismh_len32b

ISmh_unused spec_mh.ismh_unused

ISmh_version spec_mh.ismh_version

156 z/OS V1R4.0 CS: IP Programmer’s Reference

Integrated services tspec
The following integrated services tspecs apply to the integrated services data
structures and macros:

v Type IS_tspbody_t is defined by typedef as a structure to represent an Integrated
Services Tspec, and has at least the following members:

Member Type Usage

st_mh IS_main_hdr_t

tspec_u union (1)

gen_stspec gen_Tspec_t Generic Tspec

Note:

(1) While service-dependent Tspecs are possible, there are none.

v The following macros are defined with the values given below:

Macro Value

IStmh_len32b st_mh.ismh_len32b

IStmh_unused st_mh.ismh_unused

IStmh_version st_mh.ismh_version

Integrated services adspec
The following integrated services adspecs apply to the integrated services data
structures and macros:

Member Type Usage

adspec_genparms genparm_parms_t General char parameter
fragment

adspec_mh IS_main_hdr_t Main header

Chapter 5. Resource Reservation Setup Protocol API (RAPI) 157

158 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 6. X Window System interface in the z/OS CS
environment

This chapter describes the X Window System application program interface (API).
The X Window System API allows you to write applications in the MVS
environment that can be displayed on X11 servers on a TCP/IP-based network, and
provides the application with graphics capabilities as defined by the X Window
System protocol.

Support is provided for two versions of the X Window System and the
corresponding OSF/Motif. The current support, provided as part of the base IP
support in z/OS CS, is for X Window System Version 11 Release 6 and OSF/Motif
Version 1.2 and is documented in this chapter.

X Window System and OSF/Motif
This section describes the X Window System API. The X Window System API
allows you to write applications in the z/OS UNIX System Services (z/OS UNIX)
MVS environment.

The X Window System support provided with the Feature includes the following
APIs from the X Window System Version 11 Release 6:

v X11 Core distribution routines (X11)

v Inter-Client Exchange routines (ICE)

v Session Manager routines (SM)

v X Window System extended routines (Xext) including:

– XC-MISC: Allows clients to get back ID ranges from the server

– Big-Requests: Allows large length value in protocol requests

– Shape: Allows nonrectangular windows

– Sync: Lets clients synchronize through the X Server

v Authentication functions (Xau)

v X10 compatibility routines (oldX)

v X Toolkit (Xt)

v Utility functions used by Xaw (Xmu)

v Athena Widget set (Xaw)

v PEX (PEX5) 3D Graphics

v Header files needed for compiling X clients

v Selection of standard MIT X clients

v Sample X demonstrations

The X Window System support provided also includes the APIs based on
OSF/Motif Release 1.2.4:

v OSF/Motif-based widget set (Xm library)

v OSF/Motif Resource Manager (Mrm library)

v OSF/Motif User Interface language (uil library)

v OSF/Motif User Interface Language Compiler

v Header files needed for compiling clients using the OSF/Motif-based widget set

© Copyright IBM Corp. 1989, 2002 159

DLL support for the X Window System
The X Window System and OSF/Motif archive files are DLL enabled. All
applications linked using these archive files must be compiled with the DLL option.
The examples shown in “Compiling and linking OSF/Motif and X Window System
applications” on page 162 assume that c89 is using the z/OS C/C ++ Compiler. The
following DLLs are provided:

v X11 (contains the contents of libX11.a, libXau.a, liboldX.a, and libXext.a)

v SM (contains the contents of libSM.a)

v ICE (contains the contents of libICE.a)

v PEX5 (contains the contents of libPEX5.a)

v Xaw (contains the contents of libXaw.a, libXmu.a, and libXt.a)

v Xm (contains the contents of libXm.a and libXt.a)

v Mrm (contains the contents of libMrm.a)

v Uil (contains the contents of libUil.a)

These DLLs, along with their sidedecks (.x), are located in /usr/lib.

How the X Window System interface works in the MVS environment
The X Window System is a network-transparent protocol that supports windowing
and graphics. The protocol is communicated between a client or application and an
X server over a reliable bidirectional byte stream. This byte stream is provided by
the TCP/IP communication protocol. In the MVS environment, X Window System
support consists of a set of application calls that create the X protocol, as
requested by the application. This application program interface allows an
application to be created, which uses the X Window System protocol to be
displayed on an X server.

In an X Window System environment, the X server is generally located on the
workstation, and distributes user input to and accepts requests from various client
programs located either on the same system or elsewhere on a network. The X
server provides access to the resources that are shared among many X
applications, such as the screen, keyboard, mouse, fonts, and graphics contexts. A
single X server can control more than one physical screen.

The application program that you create is the client part of a client-server
relationship. The communication path from the MVS X Window System application
to the server involves the client code and TCP/IP.

The X client code uses sockets to communicate with the X server. Each client can
interact with multiple servers, and each server can interact with multiple clients.

If your application is written to the Xlib interface, it calls XOpenDisplay() to start
communication with an X server on a workstation. The Xlib code opens a
communication path called a socket to the X server, and sends the appropriate X
protocol to initiate client-server communication.

The X protocol generated by the X Window System client code uses an ISO
Latin−1 encoding for character strings, while the MVS encoding for character strings
is EBCDIC. The X Window System client code in the MVS environment
automatically transforms character strings from EBCDIC to ISO Latin-1 or from ISO
Latin-1 to EBCDIC, as needed.

160 z/OS V1R4.0 CS: IP Programmer’s Reference

z/OS UNIX application resource file
The X Window System allows you to modify certain characteristics of an application
at run time using application resources. Typically, application resources are set to
tailor the appearance and possibly the behavior of an application. The application
resources can specify information about an application’s window sizes, placement,
coloring, font usage, and other functional details.

In the z/OS UNIX environment, this information can be found in the file
/u/user_id/.Xdefaults

where
/u/user_id

is found from the environment variable home.

Identifying the target display in z/OS UNIX
The DISPLAY environment variable is used by the X Window System to identify the
host name of the target display.

The following is the format of the DISPLAY environment variable:
host_name:target_server.target_screen

Value Description

host_name Specifies the host name or IP address of the host machine on
which the X Window System server is running.

target_server Specifies the number of the display server on the host machine.

target_screen Specifies the screen to be used on the target server.

For more information about resolving a host name to an IP address, refer to the
z/OS C/C++ Programming Guide.

Programming considerations

Porting motif applications to z/OS UNIX MVS
The X Window System toolkit includes files that define two macros for obtaining the
offset of fields in an X Window System Toolkit structure, XtOffset, and XtOffsetOf.
Programs written for, or ported to, z/OS UNIX MVS must use the XtOffsetOf macro
for this purpose.

Some OSF/Motif widget and gadget resources have the type ″KeySym″. In an
ASCII-based system the KeySym is the same as the ASCII character value. For
example, the character ’F’ has the ASCII hexadecimal value 46 and a KeySym
hexadecimal value of 46.

However, on z/OS UNIX MVS, the character value of ’F’ is hexadecimal C6, while
the KeySym hexadecimal value is still 46. Remember to use true KeySym values
when specifying resources of type KeySym, whether in a defaults file or in a
function call.

In some cases, an X Window System server may have clients that are not running
on z/OS UNIX MVS. If a z/OS UNIX MVS X Window System application sends
nonstandard properties that contain text strings to the X Window System server,
and these properties might be accessed by clients that are not running on z/OS
UNIX MVS, the strings should be translated. The translation should be to the server

Chapter 6. X Window System interface in the z/OS CS environment 161

default character set before transmission to the server and to the appropriate host
character set when retrieved from the server. This translation is an application
responsibility.

Compiling and linking OSF/Motif and X Window System
applications
The z/OS UNIX c89 or make commands should be used to compile and link X
Windows® and OSF/Motif programs. The following example shows how to use the
c89 command to compile an X Window System program, xxx, which uses the
Athena widget set, and create the executable file xxx.

Note: The DLL compile option must be specified because the X Window System
and OSF/Motif archive files contain DLL-enabled modules.

c89 -o xxx -Wc,dll xxx.c Xaw.x SM.x ICE.x X11.x

The following example shows how to use the c89 command to compile an X
Windows System program, yyy, which uses the OSF/Motif widget set, and create an
executable file yyy:
c89 -o yyy -Wc,dll yyy.c /usr/lib/Xm.x SM.x ICE.x X11.x

For examples of the input to the make command, see the Makefile in each of these
subdirectories:
/usr/lpp/tcpip/X11R6/Xamples/demos
/usr/lpp/tcpip/X11R6/Xamples/clients

For more information on the z/OS UNIX c89 and make commands, refer to the
z/OS UNIX System Services Command Reference.

Running an X Window System or OSF/Motif DLL enabled application
When running an X Window System or OSF/Motif DLL-enabled application, ensure
that the LIBPATH environment variable is specified as /usr/lib.

X Window System environment variables
The following is a list of the environment variables examined by the z/OS UNIX
MVS support for X Window System Version 11, Release 6:

DISPLAY
Contains the name of the display to be used. There is no default value.

XENVIRONMENT
Contains the full pathname of a file containing resource defaults. There is no
default value.

XMODIFIERS
Used by the XSetLocaleModifiers function to specify additional modifiers. There
is no default value.

RESOURCE_NAME
Used by XtOpenDisplay as an alternative specification of an application name.
There is no default value.

XUSERFILEPATH
Used to specify the search paths for files containing application defaults. There
is no default value.

XAPPLRESDIR
Used to specify the directory to search for files containing application defaults.
There is no default value.

162 z/OS V1R4.0 CS: IP Programmer’s Reference

XFILESEARCHPATH
Used by XtResolvePathname as a default path. There is no default value.

SESSION_MANAGER
If defined, causes a Session Shell widget to connect to a session manager.
There is no default value.

XLOCALEDIR
Specifies the directory to be searched for locale files. The default value is
/usr/lib/X11/locale.

XWTRACE
Controls the generation of traces of the socket level communications between
Xlib and the X Window System server. It controls the traces as follows:

v XWTRACE undefined or 0:No trace generated.

v XWTRACE=1: Error messages.

v XWTRACE>=2: API function tracing for TRANS functions.

There is no default value. The output is sent to stderr.

XWTRACELC
If defined, causes a trace of certain locale-sensitive routines. There is no default
value. The output is sent to stderr.

EBCDIC/ASCII translation in the X Window System
Because the X Window System was designed primarily for an ASCII-based
environment and z/OS UNIX MVS uses EBCDIC, it is necessary to provide
translations between various servers and MVS clients. Translations must also be
provided between locale-based coded character sets in z/OS UNIX MVS and the
coded character sets used on the X Window System server. The following sections
describe how this is accomplished.

Locale independent translation
All arguments for X Window System functions that are specified to be in the Host
Portable Character Set are translated between EBCDIC and ASCII by a translation
between code page IBM-1047 and code page ISO8859-1. All single-byte character
set string arguments to X Window System function calls that are not
locale-dependent (do not have names starting with Xmb or Xwc) are also translated
between EBCDIC and ASCII using code page IBM-1047 and ISO8859-1. In
addition, properties of type STRING passed to XChangeProperty are translated to
ASCII before transmission to the server.

These translations are performed on data being transmitted to the server and on
data received from the server that is being returned to the application.

The arguments to X Window System functions of the type XChar2b are not
translated. This includes such functions as XDraw16, XDrawText16, and
XTextExtents16.

Locale dependent translation
The string arguments to X Window System functions with names starting with Xmb
or Xwc are translated between the current MVS z/OS UNIX locale codeset (the
value returned by nl_info(CODESET)) and the current XLocale. The MVS z/OS
UNIX locale is mapped to the XLocale by an entry in /usr/lib/X11/locale/locale.alias.
Properties passed to XChangeProperty with a type of the locale-encoding name
atom are translated from the MVS z/OS UNIX locale-coded character set to the
XLocale coded character set.

Chapter 6. X Window System interface in the z/OS CS environment 163

XTextProperty with COMPOUND_TEXT encoding
The XTextProperty structure returned by XmbTextListToProperty and
XwcTextListToProperty has its property data translated from the MVS z/OS UNIX
locale coded character set to the XLocale coded character set if the XTextProperty
encoding is COMPOUND_TEXT. Similarly the reverse translation is performed for
XmbTextPropertyToTextList and XwcTextPropertyToTextList if the XTextProperty has
the encoding COMPOUND_TEXT.

Standard clients supplied with MVS z/OS UNIX X Window System
support

The following standard clients are provided in /usr/lpp/tcpip/ X11R6/Xamples/clients:

Client Description
appres

Lists application resource database
atobm Bit map conversion utility
bitmap

Bit map editor
bmtoa Bit map conversion utility
editres

Resource editor
iceauth

ICE authority file utility
oclock

Displays time of day
xauth X authority file utility
xclipboard

Clipboard utility
xcutsel

Clipboard utility
clock Analog and digital clock for X
xdpyinfo

Display information utility for X
xfd X font display utility
xlogo Displays X logo
xlsatoms

Lists interned atoms defined on server
xlsclients

Lists client applications running on a display
xmag Magnifies part of screen
xlsfonts

Lists Server fonts
xprop Property displayer for X
xwininfo

Window information utility for X
xwd Dumps an image of an X window
xwud Displays dumped image for X

Use the man command to display information about these clients as shown below:
man -M /usr/lpp/tcpip/X11R6/Xamples/man client

Demonstration programs supplied with MVS z/OS UNIX X Window
System support

The following demonstration programs are supplied in /usr/lpp/tcpip/X11R6/
Xamples/demos:

164 z/OS V1R4.0 CS: IP Programmer’s Reference

xsamp1
Uses only Xlib

xsamp2
Uses Athena widget set

xsamp3
Uses OSF/Motif widget set

pexsamp
Uses PEX5 library

Where files are located
The following diagram shows X Window System and OSF/Motif locations in the
HFS from a user perspective.

/ (root)

/bin /lib /usr /dev /tmp /etc /u

/Xll

uil
/tcpip

/XllR6

/Xamples

/man /demos /clients

/catl (demos) (selected
standard
clients)

(man pages
for Xamples
programs)

/Xll /Xm /uil /Mrm

(header (header (header
files) files) files)

(header /ICE /SM /Xaw /Xmu /extensions /PEX5 bitmaps
files)

(header (header (header (header (header (header (bitmaps)
files) files) files) files) files) files)

/Xll /libXext.a /libICE.a /libXt.a /libXaw.a /libPEX5.a /libUil.a
/libXll.a /liboldX.a /libSM.a /libXmu.a /libXau.a /libXm.a /libMrm.a

/locale XErrorDB XKeysymDB /app-defaults

(locale (application default files)
data files)

/lib /include /lpp

Figure 1. X Window System and OSF/Motif HFS from a user perspective

Chapter 6. X Window System interface in the z/OS CS environment 165

166 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 7. Remote procedure calls in the z/OS CS
environment

This chapter describes the high-level remote procedure calls (RPCs) implemented
in TCP/IP including the RPC programming interface to the C language and
communication between processes.

The RPC protocol permits remote execution of subroutines across a TCP/IP
network. RPC, together with the eXternal Data Representation (XDR) protocol,
defines a standard for representing data that is independent of internal protocols or
formatting. RPCs can communicate between processes on the same or different
hosts.

For more information about the RPC and XDR protocols, refer to the Sun
Microsystems publication, Networking on the Sun Workstation: Remote Procedure
Call Programming Guide.

Note: RPC is supported using the C/370 programming language and the TCP/IP C
socket API. For more information about the C/370 socket API, refer to the
z/OS Communications Server: IP Application Programming Interface Guide.
For more information about z/OS UNIX System Services sockets, refer to the
z/OS C/C++ Run-Time Library Reference.

The RPC interface
To use the RPC interface, you must be familiar with programming in the
C language, and you should have a working knowledge of networking concepts.

The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the
server calls a dispatch routine, and performs the requested service. The server
sends back a reply message, after which the original procedure call returns to the
client program with a value derived from the reply message.

See Sample RPC programs, for sample RPC client, server, and raw data stream
programs. Figure 2 on page 168 and Figure 3 on page 169 provide an overview of
the high-level RPC client and server processes from initialization through cleanup.

© Copyright IBM Corp. 1989, 2002 167

TCP, UDP, or RAW

(Begin)

Initialize

Process
Call

Free
Resources

Final
Cleanup

tcp
udp
raw

clnt _create

get_myaddress
pmap_rmtcall

UDP only

none
unix
unix

success

success success

clnt_call

XDR routines XDR routines

clnt_pcreateerror callrpc

error

error error

clnt_perror
clnt_geterr

auth_destroy
clnt_destroy

(End)

clnt_perrno

clnt_freeres

auth
_create
_create
_create_default

Figure 2. Remote procedure call (client)

168 z/OS V1R4.0 CS: IP Programmer’s Reference

Portmapper
Portmapper is the software that supplies client programs with the port numbers of
server programs.

You can communicate between different computer operating systems when
messages are directed to port numbers rather than to targeted remote programs.
Clients contact server programs by sending messages to the port numbers where
receiving processes receive the message. Because you make requests to the port
number of a server rather than directly to a server program, client programs need a

Initialize

Receive
Request

Process

Reply

Transaction
Cleanup and
Final
Cleanup

TCP, UDP, or RAW UDP only

tcp
udp
raw

_create registerpcsvc

svc_getrequest

svc_run

svc_getargs

xprt_register
svc_register
pmap_set

XDR encode

error

svcerr_xxx

decode routines

success

svc_sendreply

svc_freeargs

(End)

pmap_unset
xprt_unregister
svc_unregister

svc_destroy

Figure 3. Remote procedure call (server)

Chapter 7. Remote procedure calls in the z/OS CS environment 169

way to find the port number of the server programs they wish to call. Portmapper
standardizes the way clients locate the port number of the server programs
supported on a network.

Portmapper resides on all hosts on well-known port 111. See Appendix B,
“Well-known port assignments” on page 323, for other well-known TCP and UDP
port assignments.

The port-to-program information maintained by Portmapper is called the portmap.
Clients ask Portmapper about entries for servers on the network. Servers contact
Portmapper to add or update entries to the portmap.

Contacting portmapper
To find the port of a remote program, the client sends an RPC to well-known port
111 of the server’s host. If Portmapper has a portmap entry for the remote program,
Portmapper provides the port number in a return RPC. The client then requests the
remote program by sending an RPC to the port number provided by Portmapper.

Clients can save port numbers of recently called remote programs to avoid having
to contact Portmapper for each request to a server. Some of the RPC function calls
automatically contact Portmapper on behalf of the client. This eliminates the need
for the application code to perform this task.

To see all the servers currently registered with Portmapper, use the RPCINFO
command in the following manner:
RPCINFO -p host_name

For more information about Portmapper and RPCINFO, refer to z/OS
Communications Server: IP System Administrator’s Commands.

Target assistance
Portmapper offers a program to assist clients in contacting server programs. If the
client sends Portmapper an RPC with the target program number, version number,
procedure number, and arguments, Portmapper searches the portmap for an entry,
and passes the client’s message to the server. When the target server returns the
information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

170 z/OS V1R4.0 CS: IP Programmer’s Reference

RPCGEN Command

Purpose
Use the RPCGEN command to generate the code to implement the RPC protocol.

Format

__ RPCGEN infile _`

__ RPCGEN
−c
−h
−l
−m

−o outfile infile
_`

__ b RPCGEN −s transport
−o outfile infile

_`

Parameters
-c Compiles into XDR routines.

-h Compiles into C data definitions (a header file).

-l Compiles into client-side stubs.

-m Compiles into server-side stubs without generating a main routine. This option
is useful for call-back routines and for writing a main routine for initialization.

-o outfile
Specifies the name of the output data set. If none is specified, standard output
is used for -c, -h, -l, -m, and -s modes.

infile
Specifies the name of the input data set written in the RPC language. The
default is the data specified by the SYSIN DD statement.

-s transport
Compiles into server-side stubs, using the given transport. TCP and UDP are
the supported transports. You can invoke this option more than once to compile
a server that serves multiple transports. By default, RPCGEN creates server
stubs that support both TCP and UDP.

RPCGEN is a tool that generates C code to implement an RPC protocol. The input
to RPCGEN is a language similar to C, known as RPC language.

RPCGEN infile is normally used when you want to generate all four of the following
output data sets. For example:

v If the infile is named proto.x, RPCGEN generates:
– A header file called PROTO.H
– XDR routines called PROTOX.C
– Server-side stubs called PROTOS.C
– Client-side stubs called PROTOC.C

v If the infile is named USERA.RPC.SOURCE(PROTO), RPCGEN generates:
– A header file called USERA.RPC.H(PROTO)

Chapter 7. Remote procedure calls in the z/OS CS environment 171

– XDR routines called USERA.RPC.C(PROTOX)
– Server-side stubs called USERA.RPC.C(PROTOS)
– Client-side stubs called USERA.RPC.C(PROTOC)

RPCGEN obtains the file names for the C compiler for preprocessing input from the
CCRPCGEN CLIST, which must be customized similar to the C installation
procedure. For installation using the C/C++ compiler, the following would be an
example of the values for the statements in CCRPCGEN that are used by
RPCGEN:
SET CHD = &STR(CBC) /* PREFIX FOR SYSTEM FILES */
SET CVER = &STR(OSV2R5) /* VERSION OF COMPILER */
SET COMPL = &STR(SCBCCMP) /* C COMPILER MODULES */
SET EDCMSGS = &STR(SCBCDMSG) /* C COMPILER MESSAGES */
SET LANG = &STR(CBCLMSGS) /* MESSAGE LANGUAGE */
SET SCEEHDRS = &STR(SCEEH) /* C SYSTEM HEADER FILES */
SET CMOD = &STR(CBCDRVR) /* C COMPILER EXECUTABLE MODULE */
SET WORKDA = &STR(SYSDA) /* UNIT TYPE FOR WORK FILES */
SET WRKSPC = &STR(1,1) /* CYLS ALLOCATED FOR WORK FILES */

The CCRPGEN clist must reside in the SYSPROC concatenation.

Notes:

1. A temporary file called PROTO.EXPANDED is created by the RPCGEN
command. During normal operation, this file is also subsequently erased by the
RPCGEN command.

2. The code generated by RPCGEN is not suitable for input to a C++ compiler.

For more information about the RPCGEN command, refer to the Sun Microsystems
publication, Network Programming.

172 z/OS V1R4.0 CS: IP Programmer’s Reference

|

enum clnt_.stat structure
The enum clnt_stat structure is defined in the CLNT.H file.

RPCs frequently return enum clnt_stat information. The following is the format and
a description of the enum clnt_stat structure:
enum clnt_stat {

RPC_SUCCESS=0, /* call succeeded */
/*
* local errors
*/
RPC_CANTENCODEARGS=1, /* can’t encode arguments */
RPC_CANTDECODERES=2, /* can’t decode results */
RPC_CANTSEND=3, /* failure in sending call */
RPC_CANTRECV=4, /* failure in receiving result */
RPC_TIMEDOUT=5, /* call timed out */
/*
* remote errors
*/
RPC_VERSMISMATCH=6, /* RPC versions not compatible */
RPC_AUTHERROR=7, /* authentication error */
RPC_PROGUNAVAIL=8, /* program not available */
RPC_PROGVERSMISMATCH=9, /* program version mismatched */
RPC_PROCUNAVAIL=10, /* procedure unavailable */
RPC_CANTDECODEARGS=11, /* decode arguments error */
RPC_SYSTEMERROR=12, /* generic “other problem” */
/*
* callrpc errors
*/
RPC_UNKNOWNHOST=13, /* unknown host name */
/*
* create errors
*/
RPC_PMAPFAILURE=14, /* the pmapper failed in its call */
RPC_PROGNOTREGISTERED=15, /* remote program is not registered */
/*
* unspecified error
*/
RPC_FAILED=16

};

Porting
This section contains information about porting RPC applications.

Remapping file names with MANIFEST.H
To conform to the MVS requirement that MVS data set names be eight characters
or less in length, a file called MANIFEST.H remaps the RPC long names to
eight-character derived names for internal processing.

The MANIFEST.H header file must be the first include file in the application, and it
must be present at compile time. If it is not included, the application will fail to
link-edit. If the preprocessor macro MVS is defined when the RPC.H file is included,
RPC.H will implicitly include MANIFEST.H.

Note: #define Resolve_Via_Lookup must be specified before #include manifest.h
to enable the following socket calls: endhostent(), gethostent(),
gethostbyaddr(), gethostbyname(), and sethostent().

Chapter 7. Remote procedure calls in the z/OS CS environment 173

Accessing system return messages
To access system return values, you need only use the ERRNO.H include
statement supplied with the compiler. To access network return values, you must
add the following include statement:
#include <tcperrno.h>

Printing system return messages
To print only system errors, use perror(), a procedure available in the C compiler
run-time library. To print both system and network errors, use tcperror(), a procedure
included with TCP/IP.

Enumerations
Both xdr_enum() and xdr_union() are macros to account for varying length
enumerations. xdr_enum() and xdr_union cannot be referenced by callrpc(),
svc_freeargs(), svc_getargs(), or svc_sendreply(). An XDR routine for the specific
enumeration or union must be created. For more information, see “xdr_enum()” on
page 245.

Header files for remote procedure calls
The following header files are provided with TCP/IP. To compile your program, you
must include certain header files; however, not all of them are necessary for every
RPC application program.

auth.h
auth@uni.h
bsdtime.h
bsdtocms.h
clnt.h
in.h
inet.h
manifest.h
netdb.h
pmap@cln.h

pmap@pro.h
rpc.h
rpc@msg.h
svc.h
svc@auth.h
socket.h
tcperrno.h
types.h
xdr.h

Note: When you compile your application program using RPC, you must include
the RPC header files before the X Window System include files.

Compiling and linking RPC applications
You can use several methods to compile, link-edit, and execute your TCP/IP C
source program in MVS. This section contains information about the data sets that
you must include to run your C source program under MVS batch, using
IBM-supplied cataloged procedures.

The following data set name is used as an example in the sample JCL statements:

USER.MYPROG.H
Contains user #include files.

Sample compile cataloged procedure additions
Include the following in the compile step of your cataloged procedure. Cataloged
procedures are included in the IBM-supplied samples for your MVS system.

v Add the following statement as the first //SYSLIB DD statement.

174 z/OS V1R4.0 CS: IP Programmer’s Reference

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement.
//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

Nonreentrant modules
To compile and link nonreentrant RPC applications, the procedure is similar to the
procedure for nonreentrant C applications as described in the section on
nonreentrant modules in the z/OS Communications Server: IP Application
Programming Interface Guide.

One additional JCL statement is needed. Add the following SYSLIB statement after
hlq.SEZACMTX statement in the link step:
// DD DSN=hlq.SEZARPCL,DISP=SHR

Reentrant modules
To compile and link reentrant RPC applications, the procedure is similar to the
procedure for reentrant C applications as described in the section on reentrant
modules in the z/OS Communications Server: IP Application Programming Interface
Guide.

One additional JCL statement is needed. Add the following SYSLIB statement after
hlq.SEZARNT1Screat; statement in the prelink-edit step:
// DD DSN=hlq.SEZARNT4,DISP=SHR

RPC global variables
These sections describe the three RPC global variables, rpc_createerr, svc_fds,
and svc_fdset.

Chapter 7. Remote procedure calls in the z/OS CS environment 175

rpc_createerr

Format

Usage
rpc_createerr is a global variable that is set when any RPC client creation routine
fails. Use clnt_pcreateerror() to print the message.

Context
v clntraw_create;()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>

struct rpc_createerr rpc_createerr;

176 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_fds

Format

Usage
svc_fds is a global variable that specifies the read descriptor bit set on the service
machine. This is of interest only if the service programmer decides to write an
asynchronous event processing routine; otherwise svc_run() should be used.
Writing asynchronous routines in the MVS environment is not simple, because there
is no direct relationship between the descriptors used by the socket routines and
the event control blocks commonly used by MVS programs for coordinating
concurrent activities.

Attention: Do not modify this variable.

Context
v svc_getreq()

#include <rpc.h>
int svc_fds;

Chapter 7. Remote procedure calls in the z/OS CS environment 177

svc_fdset

Format

Usage
svc_fdset is a global variable that specifies the read descriptor bit set on the service
machine. This is of interest only if the service programmer decides to write an
asynchronous event processing routine; otherwise svc_run() should be used.
Writing asynchronous routines in the MVS environment is not simple, because there
is no direct relationship between the descriptors used by the socket routines and
the event control blocks commonly used by MVS programs for coordinating
concurrent activities.

Attention: Do not modify this variable.

Context
v svc_getreqset()

#include <rpc.h>

fd_set svc_fdset;

178 z/OS V1R4.0 CS: IP Programmer’s Reference

Remote procedure and external data representation calls
These sections provide the syntax, parameters, and other appropriate information
for each remote procedure and external data representation call supported by z/OS
CS.

Chapter 7. Remote procedure calls in the z/OS CS environment 179

auth_destroy()

Format

Parameters
auth

Indicates a pointer to authentication information.

Usage
The auth_destroy() call deletes the authentication information for auth. Once this
procedure is called, auth is undefined.

Context
v authnone_create()

v authunix_create()

v authunix_create_default()

#include <rpc.h>
void
auth_destroy(auth)
AUTH *auth;

180 z/OS V1R4.0 CS: IP Programmer’s Reference

authnone_create()

Format

Parameters
None.

Usage
The authnone_create() call creates and returns an RPC authentication handle. The
handle passes the NULL authentication on each call.

Context
v auth_destroy()

v authunix_create()

v authunix_create_default()

#.include <rpc.h>.
AUTH *
authnone_create()

Chapter 7. Remote procedure calls in the z/OS CS environment 181

authunix_create()

Format

Parameters
host

Specifies a pointer to the symbolic name of the host where the desired server is
located.

uid
Specifies the user’s user ID.

gid
Specifies the user’s group ID.

len
Indicates the length of the information pointed to by aup_gids.

aup_gids
Specifies a pointer to an array of groups to which the user belongs.

Usage
The authunix_create() call creates and returns an authentication handle that
contains UNIX-based authentication information.

Context
v auth_destroy()

v authnone_create()

v authunix_create_default()

#include <rpc.h>
AUTH *
authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid;
int gid;
int len;
int *aup_gids;

182 z/OS V1R4.0 CS: IP Programmer’s Reference

authunix_create_default()

Format

Parameters
None

Usage
The authunix_create_default() call invokes authunix_create() with default
parameters.

Context
v auth_destroy()

v authnone_create()

v authunix_create()

#include <rpc.h>

AUTH *
authunix_create_default()

Chapter 7. Remote procedure calls in the z/OS CS environment 183

callrpc()

Format

Parameters
host

Specifies a pointer to the symbolic name of the host where the desired server is
located.

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Specifies the XDR procedure used to encode the arguments of the remote
procedure.

in Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Specifies a pointer to the results of the remote procedure.

Usage
The callrpc() calls the remote procedure described by prognum, versnum, and
procnum running on the host system. callrpc() encodes and decodes the
parameters for transfer.

Notes:

1. clnt_perrno() can be used to translate the return code into messages.

2. callrpc() cannot call the procedure xdr_enum. See “xdr_enum()” on page 245 for
more information.

3. This procedure uses UDP as its transport layer. See “clntudp_create()” on
page 204 for more information.

#include <rpc.h>

enum clnt_stat
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;

184 z/OS V1R4.0 CS: IP Programmer’s Reference

Return Codes
Indicates success; otherwise, an error has occurred. The results of the remote
procedure call are returned to out.

Context
v clnt_broadcast()

v clnt_call()

v clnt_perrno()

v clntudp_create()

v clnt_sperrno()

v clnt_sperrno()

v xdr_enum()

Chapter 7. Remote procedure calls in the z/OS CS environment 185

clnt_broadcast()

Format

Parameters
prognum

Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Identifies the XDR procedure used to encode the arguments of the remote
procedure.

in Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Specifies a pointer to the results of the remote procedure; however, the output
of the remote procedure is decoded.

eachresult
Specifies the procedure called after each response.

Note: resultproc_t is a type definition.
#include <rpc.h>
typedef bool_t (*resultproc_t)
();

addr
Specifies the pointer to the address of the machine that sent the results.

Usage
The clnt_broadcast() call broadcasts the remote procedure described by prognum,
versnum, and procnum to all locally connected broadcast networks. Each time
clnt_broadcast() receives a response it calls eachresult(). The format of eachresult()
is:

#include <rpc.h>
enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
resultproc_t eachresult;

186 z/OS V1R4.0 CS: IP Programmer’s Reference

Format

Return Codes
If eachresult() returns 0, clnt_broadcast() waits for more replies; otherwise,
eachresult() returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the
data link.

Context
v callpc()

v clnt_call()

#include <rpc.h>
bool_t eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

Chapter 7. Remote procedure calls in the z/OS CS environment 187

clnt_call()

Format

Parameters
clnt

Specifies the pointer to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

procnum
Identifies the remote procedure number.

inproc
Specifies the XDR procedure used to encode procnum arguments.

in Specifies a pointer to the arguments of the remote procedure.

outproc
Indicates the XDR procedure used to decode the remote procedure results.

out
Specifies a pointer to the results of the remote procedure.

tout
Indicates the time allowed for the server to respond.

Usage
The clnt_call() calls the remote procedure (procnum) associated with the client
handle (clnt).

Return Codes
Indicates success; otherwise, an error has occurred. The results of the remote
procedure call are returned in out.

Context
v callrpc()

v clnt_broadcast()

v clnt_geterr()

v clnt_perror()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>

enum clnt_stat
clnt_call(clnt, procnum,
inproc, in, outproc, out, tout)
CLIENT *clnt;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;

188 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_control()

Format

Parameters
clnt

Indicates the pointer to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

request
Determines the operation (either CLSET_TIMEOUT, CLGET_TIMEOUT,
CLGET_SERVER_ADDR, CLSET_RETRY_TIMEOUT, or
CLGET_RETRY_TIMEOUT).

info
Indicates the pointer to information used by the request.

Usage
The clnt_control() call performs one of the following control operations:

v Control operations that apply to both UDP and TCP transports:

CLSET_TIMEOUT
Sets timeout (info points to the timeval structure).

CLGET_TIMEOUT
Gets timeout (info points to the timeval structure).

CLGET_SERVER_ADDR
Gets server’s address (info points to the sockaddr_in structure).

v UDP only control operations:

CLSET_RETRY_TIMEOUT
Sets retry timeout (info points to the timeval structure).

CLGET_RETRY_TIMEOUT
Gets retry timeout (info points to the timeval structure). If you set the timeout
using clnt_control(), the timeout parameter to clnt_call() is ignored in all future
calls.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_create()

v clnt_destroy()

v clntraw_create()

v clnttcp_create()

#include <rpc.h>

bool_t
clnt_control(clnt, request, info)
CLIENT *clnt;
int request;
void *info;

Chapter 7. Remote procedure calls in the z/OS CS environment 189

v clntudp_create()

190 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_create()

Format

Parameters
host

Indicates the pointer to the name of the host at which the remote program
resides.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

protocol
Indicates the pointer to the protocol, which can be either tcp or udp.

Usage
The clnt_create() call creates an RPC client transport handle for the remote
program specified by (prognum, versnum). The client uses the specified protocol as
the transport layer. Default timeouts are set, but they can be modified using
clnt_control().

Return Codes
NULL indicates failure.

Context
v clnt_control()

v clnt_destroy()

v clnt_pcreateerror()

v clnt_spcreateerror()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>
CLIENT *
clnt_create(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
char *protocol;

Chapter 7. Remote procedure calls in the z/OS CS environment 191

clnt_destroy()

Format

Parameters
clnt

Specifies the pointer to a client handle that was previously created using
clntudp_create(), clnttcp_create(), or clntraw_create().

Usage
The clnt_destroy() call deletes a client RPC transport handle. This procedure
involves the deallocation of private data resources, including clnt. Once this
procedure is used, clnt is undefined. If the RPC library opened the associated
sockets, it also closes them. Otherwise, the sockets remain open.

Context
v clnt_control()

v clnt_create()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>
void
clnt_destroy(clnt)
CLIENT *clnt;

192 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_freeres()

Format

Parameters
clnt

Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create().

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Specifies the pointer to the results of the remote procedure.

Usage
The clnt_freeres() call deallocates any resources that were assigned by the system
to decode the results of an RPC.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_create()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>
bool_t
clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

Chapter 7. Remote procedure calls in the z/OS CS environment 193

clnt_geterr()

Format

Parameters
clnt

Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create().

errp
Indicates the pointer to the address into which the error structure is copied.

Usage
The clnt_geterr() call copies the error structure from the client handle to the
structure at address errp.

Context
v clnt_call()

v clnt_create()

v clnt_pcreateerror()

v clnt_perrno()

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperrno()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>
void
clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

194 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_pcreateerror()

Format

Parameters
s Indicates a null or null-terminated character string. If s is nonnull,

clnt_pcreateerror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage
The clnt_pcreateerror() call writes a message to the standard error device,
indicating why a client handle cannot be created. This procedure is used after
clntraw_create(), clnttcp_create(), clntudp_create(), or clnt_create(), fails.

Context
v clnt_create()

v clnt_geterr()

v clnt_perrno()

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperrno()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>

void
clnt_pcreateerror(s)
char *s;

Chapter 7. Remote procedure calls in the z/OS CS environment 195

clnt_perrno()

Format

Parameters
stat

Indicates the client status.

Usage
The clnt_perrno() call writes a message to the standard error device corresponding
to the condition indicated by stat. This procedure should be used after callrpc() if
there is an error.

Context
v callrpc()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperrno()

v clnt_sperror()

#include <rpc.h>
void
clnt_perrno(stat)
enum clnt_stat stat;

196 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_perror()

Format

Parameters
clnt

Specifies the pointer to a client handle that was previously obtained using
clnt_create(), clntudp_create(), clnttcp_create(), or clntraw_create().

s Indicates a null or null-terminated character string. If s is nonnull,
clnt_perrorerror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage
The clnt_perror() call writes a message to the standard error device, indicating why
an RPC failed. This procedure should be used after clnt_call() if there is an error.

Context
v clnt_call()

v clnt_create()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_perrno()

v clnt_spcreateerror()

v clnt_sperrno()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>
void
clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

Chapter 7. Remote procedure calls in the z/OS CS environment 197

clnt_spcreateerror()

Format

Parameters
s Indicates a null or null-terminated character string. If s is nonnull,

clnt_spcreateerror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage
The clnt_spcreateerror() call returns the address of a message indicating why a
client handle cannot be created. This procedure is used after clnt_create(),
clntraw_create(), clnttcp_create(), or clntudp_create() fails.

Return Codes
Pointer to a character string ending with a new line.

Context
v callrpc()

v clnt_geterr()

v clnt_perrno()

v clnt_perror()

v clnt_pcreateerror()

v clnt_sperrno()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>

char *
clnt_spcreateerror(s)
char *s;

198 z/OS V1R4.0 CS: IP Programmer’s Reference

clnt_sperrno()

Format

Parameters
stat

Indicates the client status.

Usage
The clnt_sperrno() call returns the address of a message corresponding to the
condition indicated by stat. This procedure should be used after callrpc(), if there is
an error.

Return Codes
Pointer to a character string ending with a new line.

Context
v clnt_call()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_spcreateerror()

v clnt_sperror()

v clnt_perrno()

v clnt_perror()

#include <rpc.h>
char *
clnt_sperrno(stat)
enum clnt_stat stat;

Chapter 7. Remote procedure calls in the z/OS CS environment 199

clnt_sperror()

Format

Parameters
clnt

Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntudp_create(), clnttcp_create(), or clntraw_create().

s Indicates a null or null-terminated character string. If s is nonnull, clnt_sperror()
prints the string s followed by a colon, followed by a space, followed by the
error message, and terminated with a new line. If s is null or points to a null
string, just the error message and the new line are output.

Usage
The clnt_sperror() call returns the address of a message indicating why an RPC
failed. This procedure should be used after clnt_call(), if there is an error.

Return Codes
Pointer to a character string ending with a new line.

Context
v clnt_call()

v clnt_create()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_perrno()

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperrno()

v clntraw_create()

v clnttcp_create()

v clntudp_create()

#include <rpc.h>

char *
clnt_sperror(clnt, s)
CLIENT *clnt;
char *s;

200 z/OS V1R4.0 CS: IP Programmer’s Reference

clntraw_create()

Format

Parameters
prognum

Specifies the remote program number.
versnum

Specifies the version number of the remote program.

Usage
The clntraw_create() call creates a dummy client for the remote double (prognum,
versnum). Because messages are passed using a buffer within the address space
of the local process, the server should also use the same address space, which
simulates RPC programs within one address space. See “svcraw_create()” on
page 232 for more information.

Return Codes
NULL indicates failure.

Context
v clnt_call()

v clnt_create()

v clnt_destroy()

v clnt_freeres()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperror()

v clntudp_create()

v clnttcp_create()

v svcraw_create()

#include <rpc.h>
CLIENT *
clntraw_create(prognum, versnum)
u_long prognum;
u_long versnum;

Chapter 7. Remote procedure calls in the z/OS CS environment 201

clnttcp_create()

Format

Parameters
addr

Indicates the pointer to the Internet address of the remote program. If addr
points to a port number of 0, addr is set to the port on which the remote
program is receiving.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

sockp
Indicates the pointer to the socket. If *sockp is RPC_ANYSOCK, then this
routine opens a new socket and sets *sockp.

sendsz
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsz
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage
The clnttcp_create() call creates an RPC client transport handle for the remote
program specified by (prognum, versnum). The client uses TCP as the transport
layer.

Return Codes
NULL indicates failure.

Context
v clnt_call()

v clnt_control()

v clnt_create()

v clnt_destroy()

v clnt_freeres()

v clnt_geterr()

v clnt_pcreateerror()

v clnt_perror()

v clnt_spcreateerror()

#include <rpc.h>
CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int *sockp;
u_int sendsz;
u_int recvsz;

202 z/OS V1R4.0 CS: IP Programmer’s Reference

v clnt_sperror()

v clntraw_create()

v clntudp_create()

Chapter 7. Remote procedure calls in the z/OS CS environment 203

clntudp_create()

Format

Parameters
addr

Indicates the pointer to the Internet address of the remote program. If addr
points to a port number of 0, addr is set to the port on which the remote
program is receiving. The remote portmap service is used for this.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

wait
Indicates that UDP resends the call request at intervals of wait time, until either
a response is received or the call times out. The timeout length is set using the
clnt_call() procedure.

sockp
Specifies the pointer to the socket. If *sockp is RPC_ANYSOCK, this routine
opens a new socket and sets *sockp.

Usage
The clntudp_create() call creates a client transport handle for the remote program
(prognum) with version (versnum). UDP is used as the transport layer.

Note: This procedure should not be used with procedures that use large arguments
or return large results. While UDP packet size is configurable to a maximum
of 64 - 1 kilobytes, the default UDP packet size is only 8 kilobytes.

Return Codes
NULL indicates failure.

Context
v call_rpc()

v clnt_call()

v clnt_control()

v clnt_create()

v clnt_destroy()

v clnt_freeres()

v clnt_geterr()

v clnt_pcreateerror()

#include <rpc.h>
CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
struct timeval wait;
int *sockp;

204 z/OS V1R4.0 CS: IP Programmer’s Reference

v clnt_perror()

v clnt_spcreateerror()

v clnt_sperror()

v clntraw_create()

v clnttcp_create()

Chapter 7. Remote procedure calls in the z/OS CS environment 205

get_myaddress()

Format

Parameters
addr

Indicates the pointer to the location where the local Internet address is placed.

Usage
The get_myaddress() call puts the local host Internet address into addr. The port
number (addr —>sin_port) is set to htons (PMAPPORT), which is 111.

Context
v clnttcp_create()

v getpcport()

v pmap_getmaps()

v pmap_getport()

v pmap_rmtcall()

v pmap_set()

v pmap_unset()

#include <rpc.h>
void
get_myaddress(addr)
struct sockaddr_in *addr;

206 z/OS V1R4.0 CS: IP Programmer’s Reference

getrpcport()

Format

Parameters
host

Specifies the pointer to the name of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or
IPPROTO_UDP).

Usage
The getrpcport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return Codes
The value 1 indicates that the mapping does not exist or that the remote portmap
could not be contacted. If Portmapper cannot be contacted, rpc_createerr contains
the RPC status.

Context
v get_myaddress()

v pmap_getmaps()

v pmap_getport()

v pmap_rmtcall()

v pmap_set()

v pmap_unset()

#include <rpc.h>
u_short
getrpcport(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
int protocol;

Chapter 7. Remote procedure calls in the z/OS CS environment 207

pmap_getmaps()

Format

Parameters
addr

Indicates the pointer to the Internet address of the foreign host.

Usage
The pmap_getmaps() call returns a list of current program-to-port mappings on the
foreign host specified by addr.

Return Codes
Returns a pointer to a pmaplist structure, or NULL.

Context
v getrpcport()

v pmap_getport()

v pmap_rmtcall()

v pmap_set()

v pmap_unset()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

struct pmaplist *
pmap_getmaps(addr)
struct sockaddr_in *addr;

208 z/OS V1R4.0 CS: IP Programmer’s Reference

pmap_getport()

Format

Parameters
addr

Indicates the pointer to the Internet address of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

protocol
Indicates the transport protocol used by the program (IPPROTO_TCP or
IPPROTO_UDP).

Usage
The pmap_getport() call returns the port number associated with the remote
program (prognum), the version (versnum), and the transport protocol (protocol).

Return Codes
The value 1 indicates that the mapping does not exist or that the remote portmap
could not be contacted. If Portmapper cannot be contacted, rpc_createerr contains
the RPC status.

Context
v getrpcport()

v pmap_getmaps()

v pmap_rmtcall()

v pmap_set()

v pmap_unset()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
u_short
pmap_getport(addr, prognum,
versnum, protocol)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int protocol;

Chapter 7. Remote procedure calls in the z/OS CS environment 209

pmap_rmtcall()

Format

Parameters
addr

Indicates the pointer to the Internet address of the foreign host.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

procnum
Identifies the procedure to be called.

inproc
Specifies the XDR procedure used to encode the arguments of the remote
procedure.

in Specifies the pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Indicates the pointer to the results of the remote procedure.

tout
Specifies the timeout period for the remote request.

portp
If the call from the remote portmap service is successful, portp contains the port
number of the triple (prognum, versnum, procnum).

Usage
The pmap_rmtcall() call instructs Portmapper, on the host at addr, to make an RPC
call to a procedure on that host. This procedure should be used only for ping-type
functions.

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
enum clnt_stat
pmap_rmtcall(addr, prognum,
versnum, procnum, inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long *portp;

210 z/OS V1R4.0 CS: IP Programmer’s Reference

Return Codes
clnt_stat enumerated type.

Context
v getrpcport()

v pmap_getmaps()

v pmap_getport()

v pmap_set()

v pmap_unset()

Chapter 7. Remote procedure calls in the z/OS CS environment 211

pmap_set()

Format

Parameters
prognum

Specifies the local program number.
versnum

Specifies the version number of the local program.
protocol

Indicates the transport protocol used by the local program.
port

Indicates the port to which the local program is mapped.

Usage
The pmap_set() call sets the mapping of the program (specified by prognum,
versnum, and protocol) to port on the local machine. This procedure is automatically
called by the svc_register() procedure.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v getrpcport()

v pmap_getmaps()

v pmap_getport()

v pmap_rmtcall()

v pmap_unset()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_set(prognum, versnum,
protocol, port)
u_long prognum;
u_long versnum;
int protocol;
u_short port;

212 z/OS V1R4.0 CS: IP Programmer’s Reference

pmap_unset()

Format

Parameters
prognum

Specifies the local program number.
versnum

Specifies the version number of the local program.

Usage
The pmap_unset() call removes the mappings associated with prognum and
versnum on the local machine. All ports for each transport protocol currently
mapping the prognum and versnum are removed from the portmap service.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v getrpcport()

v pmap_getmaps()

v pmap_getport()

v pmap_rmtcall()

v pmap_set()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_unset(prognum, versnum)
u_long prognum;
u_long versnum;

Chapter 7. Remote procedure calls in the z/OS CS environment 213

registerrpc()

Format

Parameters
prognum

Specifies the program number to register.

versnum
Specifies the version number to register.

procnum
Specifies the procedure number to register.

procname
Indicates the procedure that is called when the registered program is requested.
procname must accept a pointer to its arguments, and return a static pointer to
its results.

inproc
Specifies the XDR routine used to decode the arguments.

outproc
Specifies the XDR routine that encodes the results.

Usage
The registerrpc() call registers a procedure (prognum, versnum, procnum) with the
local Portmapper, and creates a control structure to remember the server procedure
and its XDR routine. The control structure is used by svc_run(). When a request
arrives for the program (prognum, versnum, procnum), the procedure procname is
called. Procedures registered using registerrpc() are accessed using the UDP
transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See
“xdr_enum()” on page 245 for more information.

Return Codes
The value 1 indicates success; the value -1 indicates an error.

Context
v svc_register()

v svc_run()

#include <rpc.h>
int
registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum;
u_long versnum;
u_long procnum;
char *(*procname) ();
xdrproc_t inproc;
xdrproc_t outproc;

214 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_destroy()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.

Usage
The svc_destroy() call deletes the RPC service transport handle xprt, which
becomes undefined after this routine is called.

Context
v svcraw_create()

v svctcp_create()

v svcudp_create()

#include <rpc.h>
void
svc_destroy(xprt)
SVCXPRT *xprt;

Chapter 7. Remote procedure calls in the z/OS CS environment 215

svc_freeargs()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.
inproc

Specifies the XDR routine used to decode the arguments.
in Indicates the pointer to the input arguments.

Usage
The svc_freeargs() call frees storage allocated to decode the arguments to a
service procedure using svc_getargs().

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v svc_getargs()

#include <rpc.h>
bool_t
svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

216 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_getargs()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.
inproc

Specifies the XDR routine used to decode the arguments.
in Indicates the pointer to the decoded arguments.

Usage
The svc_getargs() call uses the XDR routine inproc to decode the arguments of an
RPC request associated with the RPC service transport handle xprt. The results are
placed at address in.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v svc_freeargs()

#include <rpc.h>
bool_t
svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Chapter 7. Remote procedure calls in the z/OS CS environment 217

svc_getcaller()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.

Usage
Macro obtains the network address of the client associated with the service
transport handle xprt.

Return Codes
This is a pointer to a sockaddr_in structure.

Context
v get_myaddress()

#include <rpc.h>
struct sockaddr_in *
svc_getcaller(xprt)
SVCXPRT *xprt;

218 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_getreq()

Format

Parameters
rdfds

Specifies the read descriptor bit set.

Usage
The svc_getreq() call is used, rather than svc_run(), to implement asynchronous
event processing. The routine returns control to the program when all sockets have
been serviced.

svc_getreq limits you to 32 socket descriptors, of which 3 are reserved. Use
svc_getreqset if you have more than 29 socket descriptors.

Context
v svc_run()

#include <rpc.h>
void
svc_getreq(rdfds)
int rdfds;

Chapter 7. Remote procedure calls in the z/OS CS environment 219

svc_getreqset()

Format

Parameters
readfds

Specifies the read descriptor bit set.

Usage
The svc_getreqset() call is used, rather than svc_run(), to implement asynchronous
event processing. The routine returns control to the program when all sockets have
been serviced.

A server would use a select() call to determine if there are any outstanding RPC
requests at any of the sockets created when the programs were registered. The
read bit descriptor set returned by select() is then used on the call to
svc_getreqset().

Note that you should not pass the global bit descriptor set svc_fdset on the call to
select(), because select() changes the values. Instead, you should make a copy of
svc_fdset before you call select().

Context
v svc_run()

#include <rpc.h>
void
svc_getreqset(readfds)
fd_set readfds;

220 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_register()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.

prognum
Specifies the program number to be registered.

versnum
Specifies the version number of the program to be registered.

dispatch()
Indicates the dispatch routine associated with prognum and versnum.

The structure of the dispatch routine is:
#include <rpc.h>

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

protocol
The protocol used. The value is generally one of the following:
v 0
v IPPROTO_UDP
v IPPROTO_TCP

When a value of 0 is used, the service is not registered with Portmapper.

Attention: When using a toy RPC service transport created with svcraw_create(),
a call to xprt_register() must be made immediately after a call to svc_register().

Usage
The svc_register() call associates the program described by (prognum, versnum)
with the service dispatch routine dispatch.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v registerrpc()

v svc_unregister()

v xprt_register()

#include <rpc.h>
bool_t
svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum;
u_long versnum;
void (*dispatch) ();
int protocol;

Chapter 7. Remote procedure calls in the z/OS CS environment 221

svc_run()

Format

Parameters
None.

Usage
The svc_run() call does not return control. It accepts RPC requests and calls the
appropriate service using svc_getreqset().

Context
svc_getreqset()

#include <rpc.h>
svc_run()

222 z/OS V1R4.0 CS: IP Programmer’s Reference

svc_sendreply()

Format

Parameters
xprt

Indicates the pointer to the caller’s transport handle.
outproc

Specifies the XDR procedure used to encode the results.
out

Specifies the pointer to the results.

Usage
The svc_sendreply() call is called by the service dispatch routine to send the results
of the call to the caller.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_call()

#include <rpc.h>
bool_t
svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Chapter 7. Remote procedure calls in the z/OS CS environment 223

svc_unregister()

Format

Parameters
prognum

Specifies the program number that is removed.
versnum

Specifies the version number of the program that is removed.

Usage
The svc_unregister() call removes all local mappings of prognum and versnum to
dispatch routines and prognum, versnum, and * to port numbers.

#include <rpc.h>
void
svc_unregister(prognum, versnum)
u_long prognum;
u_long versnum;

224 z/OS V1R4.0 CS: IP Programmer’s Reference

svcerr_auth()

Format

Parameters
xprt

Specifies the pointer to the service transport handle.
why

Specifies the reason the call is refused.

Usage
The svcerr_auth() call is called by a service dispatch routine that refuses to execute
an RPC request because of authentication errors.

Context
v svcerr_noproc()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_systemerr()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_auth(xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

Chapter 7. Remote procedure calls in the z/OS CS environment 225

svcerr_decode()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The svcerr_decode() call is called by a service dispatch routine that cannot decode
its parameters.

Context
v svcerr_noproc()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_systemerr()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_decode(xprt)
SVCXPRT *xprt;

226 z/OS V1R4.0 CS: IP Programmer’s Reference

svcerr_noproc()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The svcerr_noproc() call is called by a service dispatch routine that does not
implement the requested procedure.

Context
v svcerr_decode()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_systemerr()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_noproc(xprt)
SVCXPRT *xprt;

Chapter 7. Remote procedure calls in the z/OS CS environment 227

svcerr_noprog()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The svcerr_noprog() call is used when the desired program is not registered.

Context
v svcerr_decode()

v svcerr_noproc()

v svcerr_progvers()

v svcerr_systemerr()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_noprog(xprt)
SVCXPRT *xprt;

228 z/OS V1R4.0 CS: IP Programmer’s Reference

svcerr_progvers()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.
low_vers

Specifies the low version number that does not match.
high_vers

Specifies the high version number that does not match.

Usage
The svcerr_progvers() call is called when the version numbers of two RPC
programs do not match. The low version number corresponds to the lowest
registered version, and the high version corresponds to the highest version
registered on the Portmapper.

Context
v svcerr_decode()

v svcerr_noproc()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_systemerr()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_progvers(xprt, low_vers, high_vers)
SVCXPRT *xprt;
u_long low_vers;
u_long high_vers;

Chapter 7. Remote procedure calls in the z/OS CS environment 229

svcerr_systemerr()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The svcerr_systemerr() call is called by a service dispatch routine when it detects a
system error that is not handled by the protocol.

Context
v svcerr_decode()

v svcerr_noproc()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_weakauth()

#include <rpc.h>
void
svcerr_systemerr(xprt)
SVCXPRT *xprt;

230 z/OS V1R4.0 CS: IP Programmer’s Reference

svcerr_weakauth()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Note: This is the equivalent of svcerr_auth(xprt, AUTH_TOOWEAK).

Usage
The svcerr_weakauth() call is called by a service dispatch routine that cannot
execute an RPC because of correct but weak authentication parameters.

Context
v svcerr_decode()

v svcerr_noproc()

v svcerr_noprog()

v svcerr_progvers()

v svcerr_systemerr()

#include <rpc.h>
void
svcerr_weakauth(xprt)
SVCXPRT *xprt;

Chapter 7. Remote procedure calls in the z/OS CS environment 231

svcraw_create()

Format

Parameters
None.

Usage
The svcraw_create() call creates a local RPC service transport used for timings, to
which it returns a pointer. Messages are passed using a buffer within the address
space of the local process; therefore, the client process must also use the same
address space. This allows the simulation of RPC programs within one computer.
See “clntraw_create()” on page 201 for more information.

Return Codes
NULL indicates failure.

Context
v svc_destroy()

v svctcp_create()

v svcudp_create()

#include <rpc.h>
SVCXPRT *
svcraw_create()

232 z/OS V1R4.0 CS: IP Programmer’s Reference

svctcp_create()

Format

Parameters
sock

Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is
created. If the socket is not bound to a local TCP port, it is bound to an
arbitrary port.

send_buf_size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage
The svctcp_create() call creates a TCP-based service transport to which it returns a
pointer. xprt—>xp_sock contains the transport socket descriptor. xprt—>xp_port
contains the transport port number.

Return Codes
NULL indicates failure.

Context
v svcraw_create()

v svcudp_create()

#include <rpc.h>
SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

Chapter 7. Remote procedure calls in the z/OS CS environment 233

svcudp_create()

Format

Parameters
sock

Specifies the socket associated with the service transport handle. If sock is
RPC_ANYSOCK, a new socket is created.

send_buf_size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage
The svcudp_create() call creates a UDP-based service transport to which it returns
a pointer. xprt—>xp_sock contains the transport socket descriptor. xprt—>xp_port
contains the transport port number.

Return Codes
NULL indicates failure.

Context
v svcraw_create()

v svctcp_create()

#include <rpc.h>
SVCXPRT *
svcudp_create(sockp, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

234 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_accepted_reply()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
ar

Specifies the pointer to the reply to be represented.

Usage
The xdr_accepted_reply() call translates RPC reply messages.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Chapter 7. Remote procedure calls in the z/OS CS environment 235

xdr_array()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.

arrp
Specifies the address of the pointer to the array.

sizep
Specifies the pointer to the element count of the array.

maxsize
Specifies the maximum number of elements accepted.

elsize
Specifies the size of each of the array’s elements, found using sizeof().

elproc
Specifies the XDR routine that translates an individual array element.

Usage
The xdr_array() call translates between an array and its external representation.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep;
u_int maxsize;
u_int elsize;
xdrproc_t elproc;

236 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_authunix_parms()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
aupp

Indicates the pointer to the authentication information.

Usage
The xdr_authunix_parms() call translates UNIX-based authentication information.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Chapter 7. Remote procedure calls in the z/OS CS environment 237

xdr_bool()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
bp

Indicates the pointer to the Boolean.

Usage
The xdr_bool() call translates between booleans and their external representation.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

238 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_bytes()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
sp Specifies the pointer to the byte string.
sizep

Indicates the pointer to the byte string size.
maxsize

Specifies the maximum size of the byte string.

Usage
The xdr_bytes() call translates between byte strings and their external
representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

Chapter 7. Remote procedure calls in the z/OS CS environment 239

xdr_callhdr()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
chdr

Specifies the pointer to the call header.

Usage
The xdr_callhdr() call translates an RPC message header into XDR format.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
void
xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

240 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_callmsg()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
cmsg

Specifies the pointer to the call message.

Usage
The xdr_callmsg() call translates RPC messages (header and authentication, not
argument data) to and from the XDR format.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Chapter 7. Remote procedure calls in the z/OS CS environment 241

xdr_char()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
cp Specifies the pointer to the C character.

Usage
The xdr_char() is a filter that translates between C characters and their external
representations.

Notes:

1. Encoded characters are not packed, and they occupy 4 bytes each.

2. xdr_string and xdr_text_char() are the only supported routines that convert
ASCII to EBCDIC. The xdr_char routine does not support conversion.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

v xdr_bytes()

v xdr_opaque()xdr_opaque()

v xdr_string()

#include <rpc.h>

bool_t
xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

242 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_destroy()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.

Usage
The xdr_destroy() is a macro that invokes the destroy routine associated with the
XDR stream, xdrs. Destruction usually involves freeing private data structures
associated with the stream. Using xdrs after invoking xdr_destroy() is undefined.

#include <rpc.h>
void
xdr_destroy(xdrs)
XDR *xdrs;

Chapter 7. Remote procedure calls in the z/OS CS environment 243

xdr_double()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
dp Indicates the pointer to a double-precision number.

Usage
The xdr_double() call translates between C double-precision numbers and their
external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

244 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_enum()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

ep Indicates the pointer to the enumerated number. enum_t can be any
enumeration type, such as enum colors, with colors declared as enum colors
(black, brown, red).

Usage
The xdr_enum() call translates between C-enumerated groups and their external
representation. When calling the procedures callrpc() and registerrpc(), a stub
procedure must be created for both the server and the client before the procedure
of the application program using xdr_enum(). This procedure should look like the
following:

The xdr_enum_t procedure is used as the inproc and outproc in both the client and
server RPCs. For example:

v An RPC client would contain the following lines:

v An RPC server would contain the following line:

#include <rpc.h>
bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

#include <rpc.h>
enum colors (black, brown, red)
void
static xdr_enum_t(xdrs, ep)
XDR *xdrs;
enum colors *ep;
{

xdr_enum(xdrs, ep)
}

...
error = callrpc(argv[1],ENUMRCVPROG,VERSION,ENUMRCVPROC,

xdr_enum_t,&innumber,xdr_enum_t,&outnumber;);

...

...
registerrpc(ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,xdr_enum_t);

...

Chapter 7. Remote procedure calls in the z/OS CS environment 245

Examples

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

246 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_float()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
fp

Indicates the pointer to the floating-point number.

Usage
The xdr_float() call translates between C floating-point numbers and their external
representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

Chapter 7. Remote procedure calls in the z/OS CS environment 247

xdr_free()

Format

Parameters
proc

Specifies the XDR routine.
objp

Indicates the pointer to the object being freed.

Usage
The xdr_free() is a generic freeing routine.

Note: The pointer passed to this routine is not freed, but what it points to is freed
(recursively).

#include <rpc.h>
void
xdr_free(proc, objp)
xdrproc_t proc;
char *objp;

248 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_getpos()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.

Usage
The xdr_getpos() is a macro that invokes the get-position routine associated with
the XDR stream, xdrs. A desirable feature of XDR streams is that simple arithmetic
works with this number, although the XDR stream instances do not guarantee this.

Return Codes
An unsigned integer, which indicates the position of the XDR byte stream.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
u_int
xdr_getpos(xdrs)
XDR *xdrs;

Chapter 7. Remote procedure calls in the z/OS CS environment 249

xdr_inline()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
len

Specifies the byte length of the desired buffer.

Usage
The xdr_inline() call returns a pointer to a continuous piece of the XDR stream
buffer. The value is long * rather than char *, because the external data
representation of any object is always an integer multiple of 32 bits.

Note: xdr_inline() can return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
long *
xdr_inline(xdrs, len)
XDR *xdrs;
int len;

250 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_int()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
ip Indicates the pointer to the integer.

Usage
The xdr_int() call translates between C integers and their external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

Chapter 7. Remote procedure calls in the z/OS CS environment 251

xdr_long()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
lp Indicates the pointer to the long integer.

Usage
The xdr_long() call translates between C long integers and their external
representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

252 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_opaque()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
cp Indicates the pointer to the opaque object.
cnt

Specifies the size of the opaque object.

Usage
The xdr_opaque() call translates between fixed-size opaque data and its external
representation.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Chapter 7. Remote procedure calls in the z/OS CS environment 253

xdr_opaque_auth()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
ap Indicates the pointer to the opaque authentication information.

Usage
The xdr_opaque_auth() call translates RPC message authentications.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

254 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_pmap()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
regs

Indicates the pointer to the portmap parameters.

Usage
The xdr_pmap() call translates an RPC procedure identification, such as is used in
calls to Portmapper.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
bool_t
xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Chapter 7. Remote procedure calls in the z/OS CS environment 255

xdr_pmaplist()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
rp Indicates the pointer that points to a pointer to the portmap data array.

Usage
The xdr_pmaplist() call translates a variable number of RPC procedure
identifications, such as Portmapper creates.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
bool_t
xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

256 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_pointer()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

pp Indicates the pointer that points to a pointer.

size
Specifies the size of the target.

proc
Indicates the XDR procedure that translates an individual element of the type
addressed by the pointer.

Usage
The xdr_pointer() call provides pointer-chasing within structures. This differs from
the xdr_reference() call in that it can serialize or deserialize trees correctly.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_pointer(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Chapter 7. Remote procedure calls in the z/OS CS environment 257

xdr_reference()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

pp Indicates the pointer that points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type
addressed by the pointer.

Usage
The xdr_reference() call provides pointer-chasing within structures.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

258 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_rejected_reply()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
rr Indicates the pointer to the rejected reply.

Usage
The xdr_rejected_reply() call translates rejected RPC reply messages.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Chapter 7. Remote procedure calls in the z/OS CS environment 259

xdr_replymsg()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
rmsg

Indicates the pointer to the reply message.

Usage
The xdr_replymsg() call translates RPC reply messages.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

260 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_setpos()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
pos

Indicates the pointer to a set position routine.

Usage
The xdr_setpos() is a macro that invokes the set position routine associated with
the XDR stream xdrs. The parameter pos is a position value obtained from
xdr_getpos().

Return Codes
The value 1 indicates that the XDR stream can be repositioned; the value 0
indicates otherwise.

Attention: It is difficult to reposition some types of XDR streams; therefore, this
routine may fail with one type of stream and succeed with another.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
int
xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

Chapter 7. Remote procedure calls in the z/OS CS environment 261

xdr_short()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
sp Indicates the pointer to the short integer.

Usage
The xdr_short() call translates between C short integers and their external
representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

262 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_string()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
sp Indicates the pointer that points to a pointer to the string.
maxsize

Indicates the maximum size of the string.

Usage
The xdr_string() call translates between C strings and their external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

Chapter 7. Remote procedure calls in the z/OS CS environment 263

xdr_text_char()

Format

Parameters
xdrs

Specifies the pointer to an XDR stream.
cp Specifies the pointer to the C character.

Usage
The xdr_text_char() is a filter primitive that translates between C characters and
their external representations.

Notes:
1. Encoded characters are not packed, and they occupy 4 bytes each.
2. xdr_text_char() converts ASCII to EBCDIC.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

v xdr_bytes()

v xdr_opaque()

v xdr_string()

#include <rpc.h>
bool_t
xdr_text_char(xdrs, cp)
XDR *xdrs;
char *cp;

264 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_u_char()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
ucp

Indicates the pointer to an unsigned C character.

Usage
The xdr_u_char() is a filter primitive that translates between unsigned C characters
and their external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

Chapter 7. Remote procedure calls in the z/OS CS environment 265

xdr_u_int()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
up Indicates the pointer to the unsigned integer.

Usage
The xdr_u_int() call translates between C unsigned integers and their external
representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_u_int(xdrs, up)
XDR *xdrs;
u_int *up;

266 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_u_long()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
ulp

Indicates the pointer to the unsigned long integer.

Usage
The xdr_u_long() call translates between C unsigned long integers and their
external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_u_long(xdrs, ulp)
XDR *xdrs;
u_long *ulp;

Chapter 7. Remote procedure calls in the z/OS CS environment 267

xdr_u_short()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
usp

Indicates the pointer to the unsigned short integer.

Usage
The xdr_u_short() call translates between C unsigned short integers and their
external representations.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_u_short(xdrs, usp)
XDR *xdrs;
u_short *usp;

268 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_union()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

dscmp
Indicates the pointer to the union discriminant. enum_t can be any enumeration
type.

unp
Indicates the pointer to the union.

choices
Indicates the pointer to an array detailing the XDR procedure to use on each
arm of the union.

dfault
Indicates the default XDR procedure to use.

Usage
The xdr_union() call translates between a discriminated C union and its external
representation.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Examples
The following is an example of this call:

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

#include <rpc.h>
bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

#include <rpc.h>
enum colors (black, brown, red);
bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum colors *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Chapter 7. Remote procedure calls in the z/OS CS environment 269

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

270 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_vector()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

basep
Indicates the base of the array.

nelem
Indicates the element count of the array.

elemsize
Specifies the size of each of array elements, found using sizeof().

xdr_elem
Specifies the XDR routine that translates an individual array element.

Usage
The xdr_vector() call translates between a fixed-length array and its external
representation. Unlike variable-length arrays, the storage of fixed-length arrays is
static and cannot be freed.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;
char *basep;
u_int nelem;
u_int elemsize;
xdrproc_t xdr_elem;

Chapter 7. Remote procedure calls in the z/OS CS environment 271

xdr_void()

Format

Parameters
None.

Usage
The xdr_void call always returns 1. It may be passed to RPC routines that require a
function parameter, where no action is required. This call can be placed in the
inproc or outproc parameter of the clnt_call function when you do not need to move
data.

Return Codes
Always a value of 1.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_void()

272 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_wrapstring()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
sp Indicates the pointer that points to a pointer to the string.

Usage
The xdr_wrapstring() call is the same as calling xdr_string() with a maximum size of
MAXUNSIGNED. It is useful, because many RPC procedures implicitly invoke
two-parameter XDR routines, and xdr_string() is a three-parameter routine.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()

v clnt_call()

v clnt_freeres()

v pmap_rmtcall()

v registerrpc()

v svc_freeargs()

v svc_getargs()

v svc_sendreply()

#include <rpc.h>
bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

Chapter 7. Remote procedure calls in the z/OS CS environment 273

xdrmem_create()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

addr
Indicates the pointer to the memory location.

size
Specifies the maximum size of addr.

op Determines the direction of the XDR stream (XDR_ENCODE, XDR_DECODE,
or XDR_FREE).

Usage
The xdrmem_create() call creates an XDR stream in memory. It initializes the XDR
stream pointed to by xdrs. Data is written to, or read from, addr.

#include <rpc.h>
void
xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

274 z/OS V1R4.0 CS: IP Programmer’s Reference

xdrrec_create()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

sendsize
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsize
Specifies the size of the receive buffer. Specify 0 to choose the default.

handle
Specifies the first parameter passed to readit() and writeit().

readit()
Called when a stream input buffer is empty.

writeit()
Called when a stream output buffer is full.

Usage
The xdrrec_create() call creates a record-oriented stream and initializes the XDR
stream pointed to by xdrs.

Notes:
1. The caller must set the x_op field.
2. This XDR procedure implements an intermediate record string.
3. Additional bytes in the XDR stream provide record boundary information.

#include <rpc.h>

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize;
u_int recvsize;
char *handle;
int (*readit) ();
int (*writeit) ();

Chapter 7. Remote procedure calls in the z/OS CS environment 275

xdrrec_endofrecord()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.
sendnow

Specify nonzero to write out data in the output buffer.

Usage
The xdrrec_endofrecord() call can be invoked only on streams created by
xdrrec_create(). Data in the output buffer is marked as a complete record.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

#include <rpc.h>
bool_t
xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

276 z/OS V1R4.0 CS: IP Programmer’s Reference

xdrrec_eof()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

Usage
The xdrrec_eof() call can be invoked only on streams created by xdrrec_create().

Return Codes
The value 1 indicates the current record has been consumed; the value 0 indicates
continued input on the stream.

#include <rpc.h>
bool_t
xdrrec_eof(xdrs)
XDR *xdrs;

Chapter 7. Remote procedure calls in the z/OS CS environment 277

xdrrec_skiprecord()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

Usage
The xdrrec_skiprecord() call can be invoked only on streams created by
xdrrec_create(). The XDR implementation is instructed to discard the remaining
data in the input buffer.

Return Codes
The value 1 indicates success; the value 0 indicates an error.

#include <rpc.h>
bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

278 z/OS V1R4.0 CS: IP Programmer’s Reference

xdrstdio_create()

Format

Parameters
xdrs

Indicates the pointer to an XDR stream.

file
Specifies the data set name for the input/output (I/O) stream.

op Determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Usage
The xdrstdio_create() call creates an XDR stream connected to a file through
standard I/O mechanisms. It initializes the XDR stream pointed to by xdrs. Data is
written to, or read from, file.

#include <rpc.h>
#include <stdio.h>
void
xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

Chapter 7. Remote procedure calls in the z/OS CS environment 279

xprt_register()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The xprt_register() call registers service transport handles with the RPC service
package. This routine also modifies the global variables svc_fds and svc_fdset.

Context
svc_fds

#include <rpc.h>
void
xprt_register(xprt)
SVCXPRT *xprt;

280 z/OS V1R4.0 CS: IP Programmer’s Reference

xprt_unregister()

Format

Parameters
xprt

Indicates the pointer to the service transport handle.

Usage
The xprt_unregister() call unregisters an RPC service transport handle. A transport
handle should be unregistered with the RPC service package before it is destroyed.
This routine also modifies the global variables svc_fds and svc_fdset.

#include <rpc.h>
void
xprt_unregister(xprt)
SVCXPRT *xprt;

Chapter 7. Remote procedure calls in the z/OS CS environment 281

Sample RPC programs
z/OS CS provides sample RPC programs. The C source code can be found in the
hlq.SEZAINST data set.

The following are sample C source modules:

Program Description
hlq.SEZAINST(GENESEND) RPC client
hlq.SEZAINST(GENESERV) RPC server
RAWEX RAW client/server

Running RPC sample programs
This section provides information needed to run the GENESERV, GENESEND, and
RAWEX modules.

Starting the GENESERV server
To start the GENESERV server, run GENESERV on the other MVS address space
(server).

Note: Portmapper must be running before you can run GENESERV.

Running GENESEND client
To start the GENESEND client, run GENESEND MVSX 4445 (MVSX is the name of
the host machine where the GENESERV server is running, and 4445 is the integer
to send and return).

The following output is displayed:
Value sent: 4445
Value received: 4445

Running the RAWEX module
To start RAWEX, run RAWEX 6667, (6667 is an integer chosen by you).

The following output is displayed:
Argument: 6667
Received: 6667
Sent: 6667
Result: 6667

RPC client
The following is an example of an RPC client program.

Note: The characters shown below might vary due to differences in character sets.
This code is included as an example only.

/* GENESEND.C */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */
/*** IBMCOPYR **/
/* */
/* Component Name: GENESEND.C */
/* */
/* Copyright: */
/* Licensed Materials - Property of IBM */
/* This product contains "Restricted Materials of IBM" */
/* 5735-FAL (C) Copyright IBM Corp. 1992. */
/* 5655-HAL (C) Copyright IBM Corp. 1992, 1996. */

282 z/OS V1R4.0 CS: IP Programmer’s Reference

/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by GSA ADP Schedule */
/* Contract with IBM Corp. */
/* See IBM Copyright Instructions. */
/* */
/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC00E */
/* */
/* */
/*** IBMCOPYR **/
static char ibmcopyrÝ} =

"GENESEND - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5735-FAL (C) Copyright IBM Corp. 1992. "
"5655-HAL (C) Copyright IBM Corp. 1994. "
"See IBM Copyright Instructions.";

#define MVS
#include <stdio.h>
#include <rpc.h>
#include <socket.h>
#define intrcvprog ((u_long)150000)
#define version ((u_long)1)
#define intrcvproc ((u_long)1)
main(argc, argv)

int argc;
char *argvÝ};

{
int innumber;
int outnumber;
int error;
if (argc != 3) {

fprintf(stderr,"usage: %s hostname integer\n", argvÝ0});
exit (-1);

} /* endif */
innumber = atoi(argvÝ2});
/*
* Send the integer to the server. The server should
* return the same integer.
*/
error = callrpc(argvÝ1},intrcvprog,version,intrcvproc,xdr_int,

(char *)&innumber,xdr_int,(char *)&outnumber);
if (error != 0) {

fprintf(stderr,"error: callrpc failed: %d \n",error);
fprintf(stderr,"intrcprog: %d version: %d intrcvproc: %d",

intrcvprog, version,intrcvproc);
exit(1);

} /* endif */
printf("value sent: %d value received: %d\n", innumber, outnumber);
exit(0);

}

RPC server
The following is an example of an RPC server program.
/* GENERIC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY */
/* PORTMAPPER MUST BE RUNNING */

/*** IBMCOPYR **/
/* */
/* Component Name: GENESERV.C */
/* */
/* Copyright: */
/* Licensed Materials - Property of IBM */
/* This product contains "Restricted Materials of IBM" */
/* 5735-FAL (C) Copyright IBM Corp. 1992. */

Chapter 7. Remote procedure calls in the z/OS CS environment 283

/* 5655-HAL (C) Copyright IBM Corp. 1992, 1996. */
/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by GSA ADP Schedule */
/* Contract with IBM Corp. */
/* See IBM Copyright Instructions. */
/* */
/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC00F */
/* */
/* */
/*** IBMCOPYR **/

static char ibmcopyrÝ} =
"GENESERV - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5735-FAL (C) Copyright IBM Corp. 1992. "
"5655-HAL (C) Copyright IBM Corp. 1994. "
"See IBM Copyright Instructions.";

#ifndef MVS
#define MVS
#endif

#include <rpc.h>
#include <stdio.h>

#define intrcvprog ((u_long)150000)
#define fltrcvprog ((u_long)150102)
#define intvers ((u_long)1)
#define intrcvproc ((u_long)1)
#define fltrcvproc ((u_long)1)
#define fltvers ((u_long)1)

main()
{

int *intrcv();
float *floatrcv();

/*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER*/

/*FIRST PROGRAM*/
registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
printf("Intrcv Registration with Port Mapper completed\n");

/*OR MULTIPLE PROGRAMS*/
registerrpc(fltrcvprog,fltvers,fltrcvproc,

floatrcv,xdr_float,xdr_float);
printf("Floatrcv Registration with Port Mapper completed\n");

/*
* svc_run will handle all requests for programs registered.
*/
svc_run();
printf("Error:svc_run returned!\n");
exit(1);

}

/*
* Procedure called by the server to receive and return an integer.
*/
int *
intrcv(in)

int *in;
{

int *out;

284 z/OS V1R4.0 CS: IP Programmer’s Reference

printf("integer received: %d\n",*in);
out = in;
printf("integer being returned: %d\n",*out);
return (out);

}

/*
* Procedure called by the server to receive and return a float.
*/

float *
floatrcv(in)

float *in;
{

float *out;

printf("float received: %e\n",*in);
out=in;
printf("float being returned: %e\n",*out);
return(out);

}

RPC raw data stream
The following is an example of an RPC raw data stream program.
/*RAWEX */
/* AN EXAMPLE OF THE RAW CLIENT/SERVER USAGE */
/* PORTMAPPER MUST BE RUNNING */
static char ibmcopyrÝ} =

"RAWEX - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5735-FAL (C) Copyright IBM Corp. 1992. "
"5655-HAL (C) Copyright IBM Corp. 1994. "
"See IBM Copyright Instructions.";

/*** IBMCOPYR **/
/* */
/* Component Name: RAWEX.C (alias EZAEC01H) */
/* */
/* Copyright: */
/* Licensed Materials - Property of IBM */
/* This product contains "Restricted Materials of IBM" */
/* 5735-FAL (C) Copyright IBM Corp. 1992. */
/* 5655-HAL (C) Copyright IBM Corp. 1992, 1996. */
/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by GSA ADP Schedule */
/* Contract with IBM Corp. */
/* See IBM Copyright Instructions. */
/* */
/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC01H */
/* */
/* */
/*** IBMCOPYR **/
/*
* This program does not access an external interface. It provides
* a test of the raw RPC interface allowing a client and server
* program to be in the same process.
*
*/
#ifndef MVS
#define MVS
#endif
#include <rpc.h>
#include <stdio.h>
#define rawprog ((u_long)150104)
#define rawvers ((u_long)1)

Chapter 7. Remote procedure calls in the z/OS CS environment 285

#define rawproc ((u_long)1)
extern enum clnt_stat clntraw_call();
extern void raw2();
main(argc,argv)
int argc;
char *argvÝ};
{

SVCXPRT *transp;
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int bout,in;
register CLIENT *clnt;
enum clnt_stat cs;
int addrlen;
/*
* The only argument passed to the program is an integer to
* be transferred from the client to the server and back.
*/
if(argc!=2) {

printf("usage: %s integer\n", argvÝ0});
exit(-1);

}
in = atoi(argvÝ1});
/*
* Create the raw transport handle for the server.
*/
transp = svcraw_create();
if (transp == NULL) {

fprintf(stderr, "can’t create an RPC server transport\n");
exit(-1);

}
/* In case the program is already registered, deregister it */
pmap_unset(rawprog, rawvers);
/* Register the server program with PORTMAPPER */
if (!svc_register(transp,rawprog,rawvers,raw2, 0)) {

fprintf(stderr, "can’t register service\n");
exit(-1);

}
/*
* The following registers the transport handle with internal
* data structures.
*/
xprt_register(transp);
/*
* Create the client transport handle.
*/
if ((clnt = clntraw_create(rawprog, rawvers)) == NULL) {

clnt_pcreateerror("clntudp_create");
exit(-1);

}
total_timeout.tv_sec = 60;
total_timeout.tv_usec = 0;
printf("Argument: %d\n",in);
/*
* Make the call from the client to the server.
*/
cs=clnt_call(clnt,rawproc,xdr_int,

(char *)&in,xdr_int,(char *)&bout,total_timeout);
printf("Result: %d",bout);
if(cs!=0) {

clnt_perror(clnt,"Client call failed");
exit(1);

}
exit(0);

}
/*

286 z/OS V1R4.0 CS: IP Programmer’s Reference

* Service procedure called by the server when it receives the client
* request.
*/
void raw2(rqstp,transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
int in,out;
if (rqstp->rq_proc=rawproc) {

/*
* Unpack the integer passed by the client.
*/
svc_getargs(transp,xdr_int,&in);
printf("Received: %d\n",in);
/*
* Send the integer back to the client.
*/
out=in;
printf("Sent: %d\n",out);
if (!svc_sendreply(transp, xdr_int,&out)) {

printf("Can’t reply to RPC call.\n");
exit(1);

}
}

}

RPCGEN sample programs
This section provides information about sample RPCGEN programs. The C source
code can be found in the hlq.SEZAINST data set.

The following are sample C source files:

File Description
RG RPCGEN user-generated input
RGUC RPCGEN user-generated client
RGUS RPCGEN user-generated server

Generating your own sequential data sets
The following steps describe how to generate your own sequential data sets:

1. Execute RPCGEN RG from the TSO command line.

The following sequential data sets are generated in your user space:
v user_id.RG.H
v user_id.RGC.C
v user_id.RGS.C
v user_id.RGX.C

2. Verify that the sample C source code modules RGUC and RGUS contain the
#include statements found in user_id.RGX.C.

3. Verify that user_id.RG.H is referenced by the compile procedure.

Building client and server executable modules
Complete the following steps to build client and server executable modules:
1. Compile the RGUS C source program.
2. Compile the RGUC C source program.
3. Compile the RGS.C C source program generated by RPCGEN.
4. Compile the RGC.C C source program generated by RPCGEN.
5. Link-edit the sample source modules RGS and RGUS.

Chapter 7. Remote procedure calls in the z/OS CS environment 287

6. Link-edit the sample source modules RGUC and RGC.

Running RPCGEN sample programs
This section provides information needed to run the sample programs in RPCGEN.

1. Execute RGS on the other MVS address space (server).

No message is displayed.

2. Execute RGUC MVSX 6504 (MVSX is the host machine where the RGS server
is running, and 6504 is the integer chosen by you).

After executing the RGUC client, the following message is displayed:

Output on the server session: 6504

288 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 8. Remote procedure calls in the z/OS UNIX System
Services environment

The HFS files used by z/OS UNIX System Services RPC and their location in the
HFS are as follows:

v /usr/include/rpc: All header files are contained here.

v /usr/lib/librpclib.a: RPC archive files.

v orpcgen: ONC RPC protocol compiler.

v orpcinfo: Utility program for looking at portmaps of networked machines.

v oportmap: Network service program that maps ONC RPC program and version
numbers to transport-specific port numbers.

Deviations from Sun RPC 4.0

Source margins
The source was modified to fit into 72 columns.

Functions
xdr_enum()

In z/OS UNIX System Services rpc xdr_enum() is a macro. This is a change
identical to the changes in TCP/IP Version 2 for MVS and VM, and Version 3.1 for
MVS. It is necessary because enumerations in C/370™ may have a length of 1, 2,
or 4 bytes. The enum_t is not defined and xdr_enum() is replaced first by a call to
_xdr_enum() that returns the entry to the appropriate XDR routine (xdr_char(),
xdr_short(), or xdr_long()), which is then followed by a call to that routine. The
xdr_union() is also modified into a macro, which separates the call for the
discriminant from the remainder. The discriminant is processed as an enumeration,
and then passed as a value to _xdr_union() to process the remaining union.

xdr_string()

As with previous 370 versions of TCP/IP, xdr_string() translates from EBCDIC to
ASCII or reverse. With z/OS UNIX System Services the iconv() call is used, and
data is translated directly into or out of the XDR buffers if sufficient buffers are
available as indicated by an xdr_inline() call. With previous versions (or with z/OS
UNIX System Services if the entire string will not fit into the buffer) it is necessary to
allocate an additional buffer. While encoding, if the length of the data changes in
the translation, xdr_setpos() is used to adjust the XDR buffer to reflect the actual
amount of translated data. realloc() is used while decoding or for the temporary
buffer, which may be necessary while encoding.

The default translation is between ISO8859-1 and IBM-1047. This can be modified
by iconv_open() calls during initialization, by specifying the external iconv_t
variables xdr_hton_cd and xdr_ntoh_cd.

xdr_float(), xdr_double()

The format for S/370™ floating point data differs from the IEEE format specified for
XDR. The xdr_float() and xdr_double() routines are modified to make the necessary
conversions. For z/OS UNIX System Services, these routines utilize the C/370

© Copyright IBM Corp. 1989, 2002 289

library routines frexp() and ldexp() to extract and restore the exponent from the
floating point number, rather than private subroutines.

Using z/OS UNIX System Services RPC
For RPC, a Sun ONC sample program is provided in /usr/lpp/tcpip/rpc/samples. To
run the sample, you can run the Makefile facility in the rpc samples directory.
Running make produces three executable files.

v printmsg

The command printmsg text prints the message (text) on the local console. It
can be displayed by viewing the system log.

v msg_svc

msg_svc is an RPC server that enables the user at a remote station to put a
message on the console of the server. The command msg_svc & starts this
server.

v rprintmsg

The command rprintmsg rhost text prints a message (text) on the console of
host rhost.

Note: The _C89_LIBDIRS environmental variable must be set (for example,
export_C89_LIBDIRS=/usr/lpp/tcpip/lib) before the make is executed.

A sample makefile is provided: /usr/lpp/tcpip/rpc/samples/Makefile. To run make,
use make -f /usr/lpp/tcpip/rpc/samples/Makefile from a writable directory.

New cache call function for RPC
svcudp_enablecache(transp, size)
SVCXPRT *transp;
u_long size;

where:

– svcudp_enablecache enables the caching of replies to remote calls using
UDP. When a request due to a retry is received, and there is a reply to an
earlier attempt in the cache, the cached reply is immediately returned to the
client without calling the remote procedure.

– transp is the UDP service transport for which caching is to be enabled.

– size is the number of entries to be provided in the cache.

When issuing RPCGEN for a specification file that contains a %#, the following
compiler error message may be displayed: ″ERROR EDC0401 abc.x:n The
character is not valid,″ where abc.x is the name of the file and n is the line number
containing a %#. This combination of characters is not accepted by the compiler.

Support for 64-bit integers
Four XDR functions support 64-bit integers in the z/OS UNIX System Services RPC
API.

The function xdr_hyper() is equivalent to xdr_longlong_t(). The function
xdr_u_hyper() is equivalent to xdr_u_longlong_t.

XDR Function Description
xdr_hyper() Translates between C long longs and their external

representatives.

290 z/OS V1R4.0 CS: IP Programmer’s Reference

XDR Function Description
xdr_u_hyper() Translates between C unsigned long longs and their external

representatives.
xdr_longlong_t() Translates between C long longs and their external

representatives.
xdr_u_longlong_t() Translates between C unsigned long longs and their external

representatives.

UDP transport protocol CLIENT handles
The function of clntudp_bufcreate() is similar to clnttcp_create() but creates UDP
transport protocol CLIENT handles. The wait time for retries and timeouts is
specified for the UDP transport. The total time allowed for RPC completion can be
specified by clnt_call(). Buffer sizes may be specified or defaulted. The same
potential for version number mismatch exists. Success returns the CLIENT handle,
failure NULL.
CLIENT *
clntudp_bufcreate(addr, prognum, versnum, wait, sockp,sendsz,recvsz)

struct sockaddr_in *addr;
u_long prognum, versnum;
struct temeval wait;
int *sockp;
u_int sendsz;
u_int recvsz;

Restrictions
RPC does not support the Binary Floating Point Facility. If you install the BFP
processor, you must compile your RPC applications to preclude use of the BFP
hardware. You can do this by specifying compiler option ARCH(0), (the default
setting).

Chapter 8. Remote procedure calls in the z/OS UNIX System Services environment 291

292 z/OS V1R4.0 CS: IP Programmer’s Reference

Chapter 9. Network Computing System (NCS)

The Network Computing System (NCS) is a set of tools for heterogeneous
distributed computing. These tools conform to the Network Computing Architecture.
This chapter introduces the Network Computing Architecture and NCS.

To use the NCS system calls, you must know C language programming. For more
information about NCS, refer to the NCS for IBM AIX/ESA Planning and
Administration Guide and the NCS for IBM AIX/ESA Programming Reference.

NCS and the Network Computing Architecture
NCS is an implementation of the Network Computing Architecture, an architecture
for distributing software applications across heterogeneous collections of computers,
networks, and programming environments. Programs based on NCS can take
advantage of computing resources throughout a network or internet, with different
parts of each program executing on the computers best suited for the tasks.

The Network Computing Architecture supports distributed programs of many kinds.
For example, one program might perform graphical input and output on a
workstation while it does intense computation on a supercomputer. Another program
might perform many independent calculations on a large set of data; it could
distribute these calculations among any number of available processors on the
network or internet.

NCS components
The components of NCS are written in portable C wherever possible. They are
available in source code and in several binary formats. Currently, the NCS
components are:
v Remote procedure call (RPC) run-time library
v Location Broker
v Network Interface Definition Language (NIDL) compiler

The RPC run-time library and the Location Broker provide run-time support for
network computing. These two components, along with various utilities and files,
make up the Network Computing Kernel (NCK), which contains all the software you
need to run a distributed application.

The Network Interface Definition Language (NIDL) compiler is a tool for developing
distributed applications.

Remote procedure call run-time library
The RPC run-time library is the backbone of the Network Computing System. It
provides the calls that enable local programs to execute procedures on remote
hosts. These calls transfer requests and responses between clients (the programs
calling the procedures) and servers (the programs executing the procedures).

When you write NCS applications, you usually do not use many RPC run-time
library calls directly. Instead, you write interface definitions in NIDL and use the
NIDL compiler to generate most of the required calls to the run-time library.

© Copyright IBM Corp. 1989, 2002 293

Location broker
A broker is a server that provides information about resources. The Location Broker
enables clients to locate specific objects (for example, databases) or specific
interfaces (for example, data retrieval interfaces). Location Broker software includes
the Global Location Broker (GLB), the Local Location Broker (LLB), a client agent
through which programs use GLB and LLB services, and administrative tools.

The GLB stores in a database the locations of objects and interfaces throughout a
network or internet; clients can use the GLB to access an object or interface without
knowing its location beforehand. The LLB stores in a local database similar
information about resources on the local host; it also implements a forwarding
facility that provides access by means of a single address to all of the objects and
interfaces at the host.

Network interface definition language compiler
The NIDL compiler takes as input an interface definition written in NIDL. From this
definition, the compiler generates source code in portable C for client and server
stub modules. An interface definition specifies the interface between a user of a
service and the provider of the service; it defines how a client sees a remote
service and how a server sees requests for its service.

The stubs produced by the NIDL compiler contain nearly all of the remoteness in a
distributed application. They perform data conversions, assemble and disassemble
packets, and interact with the RPC run-time library. It’s much easier to write an
interface definition in NIDL than it would be to write the stub code that the NIDL
compiler generates from your definition.

MVS implementation of NCS
The following list indicates the NCS components that are available in MVS or z/OS
UNIX.
v Network Interface Definition Language (NIDL) compiler 1.0
v Network Computing Kernel (NCK) 1.1

The IBM MVS implementation of NCS differs from the Apollo Computer, Inc.
implementation of NCS. The following list summarizes the differences between the
two implementations:

v The IBM MVS implementation of NCS contains support for the Non-Replicated
Global Location Broker daemon (nrglbd). It does not contain support for the
Global Location Broker daemon (glbd), which can be replicated on multiple hosts
in the network.

v The IBM MVS implementation of NCS does not contain support for the Data
Replication Manager Administrative Tool (drm_admin). This tool works only with
the replicated version of the Global Location Broker, which is not supported in
MVS NCS.

v The IBM MVS implementation of NCS does not support multitasking. Neither
does it support forking or spawning a task. It does not support Apollo’s
Concurrent Programming Support (CPS).

v The IBM MVS implementation of NCS supports AF_INET only.

v In NCS, the receiving machine (client or server) translates EBCDIC characters to
ASCII and ASCII characters to EBCDIC. The IBM MVS implementation of NCS
translates correctly, but the Apollo NCS Version 1.0 code has the following
problems:

294 z/OS V1R4.0 CS: IP Programmer’s Reference

– The EBCDIC Null character 0x00 is incorrectly translated to the ASCII
character 0x02. It should be translated to the ASCII character 0x00.

– The EBCDIC Delete character 0x07 is incorrectly translated to the ASCII
character 0x10.

– The EBCDIC Line Feed character 0x25 is incorrectly translated to the ASCII
character 0x3f.

These are the three significant errors in the EBCDIC to ASCII translation table
that is part of NCS Version 1.0. EBCDIC to ASCII translation works correctly only
if you do not use the previous characters or if the EBCDIC to ASCII translation
table has already been fixed in the NCS program on the receiving side.

v NCS Version 1.0 does not correctly translate between IBM floating point and
IEEE floating point. This includes both the translation from IEEE to IBM floating
point and IBM to IEEE floating point. As with EBCDIC to ASCII translations, the
receiver of the data performs the floating point conversion. Servers and clients
can both act as receivers of data. Therefore, NCS programs on both sides need
to contain correct support of IBM floating point if you pass floating point data to
or from a system that uses IBM floating point.

v Apollo NCS Version 1.0 supports two enum data types: the short enum, which
NCS assumes occupies 2 bytes in storage; and the regular enum, which
occupies 4 bytes. The IBM C/370 Compiler dynamically determines the size
required for an enum variable as 1 byte, 2 bytes, or 4 bytes.

The NCS short enum data type works correctly on MVS, but the NCS regular
enum data type does not. If for some reason you cannot use the short enum
data type on MVS and must use the regular enum data type, then you must force
the C/370 compiler to allocate 4 bytes for all enum variables.

If your Interface Definition Language (IDL) contains enum typedefs as input to
the NIDL Compiler, for example

typedef enum {low, medium, high} word;
typedef enum {red, green, blue} colors;

then you must modify the header data set that gets generated by the NIDL
compiler. If the header data set is to be used on MVS with the C/370 compiler,
you must force the compiler to use fullword enumeration types:
/* you should add the following define to the header data set */
#define INT_MAX (0x7fffffff)

/* you need to modify the declares for the enum data type to */
/* force the compiler to use 4 bytes (word) for regular enum. */
enum word {low, medium, high, word_expand_to_fullword = INT_MAX};
enum colors {red, green, blue, colors_expand_to_fullword = INT_MAX};

If you do not force the compiler to use fullword enumeration types, the compiler
assigns either 1 byte or 2 bytes to your enum variables and the enum variables
are not transmitted correctly using NCS.

Note: MVS NCS does not support C language pragma statements.

NCS system IDL data sets
The NCS System Interface Definition Language (IDL) data sets consist of several
interface definition data sets that are distributed with NCS. These data sets define
types and constants, or local or remote interfaces. Some of these data sets can be
imported by your own IDL data set. The import declaration is an NIDL statement

Chapter 9. Network Computing System (NCS) 295

similar to the C #include directive, which causes other IDL data sets to be included
by the NIDL compiler. You do not need to run NIDL against the data sets to be
imported.
v base.idl
v conv.idl
v glb.idl
v lb.idl
v llb.idl
v nbase.idl
v rpc.idl
v rrpc.idl
v socket.idl
v uuid.idl

For more information on IDL files, refer to the NCS for IBM AIX/ESA Planning and
Administration Guide.

NCS C header data sets and the Pascal include data set
The following is a list of the C header data sets that you might need to include in
your C source programs to use NCS. These data sets can also be included by the
NIDL-generated stub code. These data sets are located in hlq.SEZACMAC and
must be copied to your user ID.

The following is a list of the headers used by NCS:

base.h
conv.h
glb.h
bsdtocms.h
idl@base.h
lb.h
llb.h
nbase.h

ncsdefs.h
ncssock.h
pfm.h
rpc.h
rrpc.h
socket.h
uuid.h

IDL@BASE.COPY is the name of the Pascal include data set. This data set should
be included in your client or server source code if it is written in Pascal.

NCS RPC run-time library
On MVS, all of the routines that make up the NCS RPC run-time library are stored
in the hlq.SEZALIBN data set. This library must be specified on the SYSLIB DD
statement of your link-edit job step.

Portability issues
There are several NCS-based portability issues of which you need to be aware.

NCS defines NCSDEFS.H
The linkage editor and loader on MVS restrict the number of characters in an
external name to eight characters or less. This means that if you are porting an
existing non-MVS program, and it contains external references that are longer than
eight characters, you need to redefine these references into unique, eight-character

296 z/OS V1R4.0 CS: IP Programmer’s Reference

names. If you are writing new code on MVS and you create external references that
are longer than eight characters, you also have to redefine these references into
unique eight-character names.

A data set called NCSDEFS.H, contains the redefines of all the external references
greater than eight characters in length that are part of the NCS RPC run-time
library. This data set needs to be included in all of your code that uses NCS.

Figure 4 shows the lines of code that should be included in each NCS-based
routine to maintain portability of your code.

To compile the code on MVS, define IBM370 to the compiler by using the compile
option DEFINE(IBM370). By isolating MVS-dependent sections of code, you can
maintain code portability.

Required user-defined USERDEFS.H
The NIDL compiler generates stub code. For this stub code to compile correctly on
MVS, the external references greater than eight characters must be redefined to
eight characters or less. The data set USERDEFS.H contains a template for the
information that needs to be redefined.

The following are considerations when using the USERDEFS.H data set.

v Should be copied to your user ID and be renamed to something appropriate for
your NCS-based code (for example, user_id.USERDEFS.H).

This data set is a good place to put any code-specific external names longer
than eight characters that need to be redefined.

v Must always contain the redefines for the server and client entry point vector
(epv). See the example USERDEFS.H data set shown in this section for more
information about USERDEFS.H.

v Should be included in all your NCS-based source code

v Must be included by the NIDL-generated stubs and switches.

To have NIDL automatically add this include, use the NIDL run-time option -inc.

Figure 5 shows the H data set in the stub and switch code. You should also follow
this method for including the USERDEFS.H data set (or whatever you renamed it)
in your NCS-based code.

The following provides an example of the USERDEFS.H data set:

#ifdef IBM370
include “ncsdefs.h” /* NCS redefines for IBM 370.*/
#endif

Figure 4. Macro to maintain IBM System/370 portability

#ifdef IBM370
include “ncsdefs.h”
include “userdefs.h”
#endif

Figure 5. NCSDEFS.H and USERDEFS.H include statements

Chapter 9. Network Computing System (NCS) 297

/***
* Template for User Redefines
* On IBM MVS or MVS operating systems external references longer
* than 8 characters must be redefined to 8 characters
* or less. This data set must be included in your Client or Server
* code, and you must provide the nidl compiler with the name of
* this data set when nidl is invoked so that the stub code can also
* include it.
***/
#define IDL_interface_name _server_epv xxxSEpv
#define IDL_interface_name: _client_epv xxxCEpv

The following is a description of the elements shown in the preceding example.

Element Description

IDL_interface_name
The interface name coded in your IDL data set. You must replace
IDL_interface_name with this name.

xxx A unique three-character sequence, starting with a letter, that
makes this redefine name unique throughout your NCS-based
programs. For example, the xxx could be replaced with the first 3
characters of the IDL_interface_name.

See “NIDL compiler options” on page 300 for a description of NIDL run-time options.

Preprocessing, compiling, and linking
The following sections provide information about how to compile and link-edit your
program:
v NCS Preprocessor Programs
v Compiling and Linking NCS Programs

NCS preprocessor programs
The NIDL compiler translates an NIDL interface definition into the NCS client and
server stub modules. Before the C/C++ for z/OS compiler can be run on
NCS-based code, any $ (such as those in the NCS RPC run-time library routines)
must be converted to an underscore (_). You can use CPP to do this conversion.
For more information about CPP, see “Converting C identifiers using the CPP
program” on page 300.

NIDL compiler
The Network Interface Definition Language (NIDL) compiler is a member of
hlq.SEZALOAD. MVS data sets written in NIDL must have the form
user_id.name.IDL. The NIDL compiler generates a server stub data set, a client
stub data set, a client switch data set, and a header data set.

For more information about NIDL, refer to the NCS for IBM AIX/ESA Planning and
Administration Guide.

A command list (CLIST) called RUNNIDL is provided to assist you in invoking the
NIDL compiler. RUNNIDL is a member of hlq.SEZAINST. The NIDL options
specified in RUNNIDL CLIST are set to the most frequently used NIDL run-time
options. If you do not want to run with these NIDL options, you can invoke the NIDL
compiler directly.

The NIDL compiler does not support IDL include files that are members of a
partitioned data set.

298 z/OS V1R4.0 CS: IP Programmer’s Reference

|

Any NCS system IDL files that are imported by your IDL data set must be copied
from hlq.SEZAINST to your user ID. The following are the members of
hlq.SEZAINST that you might need to copy.

Member Data set name
basei user_id.base.idl
convi user_id.conv.idl
glbi user_id.glb.idl
lbi user_id.lb.idl
llbi user_id.llb.idl
nbasei user_id.nbase.idl
rpci user_id.rpc.idl
rrpci user_id.rrpc.idl
socketi user_id.socket.idl
uuidi user_id.uuid.idl

Use the RUNNIDL CLIST command in the following format:

__ RUNNIDL IDL_d_s_n IDL
C

inc (d_s_n) pascal

_`

Parameter Description

IDL_d_s_n Specifies the data set name of the NIDL data set.

IDL Specifies the data set type of the NIDL data set. The data set type
must be IDL.

inc (d_s_n) Specifies the data set name of a header data set that contains
redefines specific to your programs and stubs. The NIDL compiler
generates code to include the user-specified-include data set name
in the stub data set and switch code that it generates. The data set
name defaults to the USERDEFS.H data set.

pascal Specifies that the NIDL compiler generates a Pascal language
include data set as output. The server stub data set, client stub
data set, client switch data set, and header data sets are generated
in C language.

The following example invokes the NIDL compiler using the BANK.IDL data set as
input. The header data set containing the redefines for BANK is in the data set
BANKDEFS.H.
RUNNIDL BANK IDL inc (bankdefs)

NIDL compiler limitations: You should be aware of the following limitations
concerning the NIDL compiler options on MVS.

v −no_cpp

You cannot invoke the NCS CPP routine from within the NIDL compiler. If you
invoke NIDL directly, you must specify the −no_cpp option.

v −ext

The extension option is used to generate unique data set names for the NIDL
output. The defaults for −ext on MVS are @C.C@CSTUB, @S.C@SSTUB, and
@W.C@CSWTCH. The extension is appended to the data set name of the IDL
data set to generate a unique data set name for the two stubs and the switch.

Chapter 9. Network Computing System (NCS) 299

For example, the IDL data set name and default extension for a client switch are
appended in the following format:
IDL_data_set_name@W.C@CSWTCH

Note: This default restricts the IDL data set name to 6 characters or less.

The following is a list of data set names and default low-level qualifiers for the NIDL
generated output:

Data set name Low-level qualifier Description
IDL_data_set_name@C C@CSTUB Client stub
IDL_data_set_name@W C@CSWTCH Client switch
IDL_data_set_name@S C@SSTUB Server stub
IDL_data_set_name H C header data set
IDL_data_set_name COPY Pascal header data set (if the

pascal option is used).

You can change this default by invoking NIDL directly and specifying your own -ext
option. If you specify your own -ext option, the name of your data set is restricted to
a maximum of 8 characters, and the extension is restricted to a maximum of 8
characters.

NIDL compiler options: The linkage editor and loader on MVS restricts the
number of characters in an external name to 8 characters or less. For the code
generated by the NIDL compiler to compile correctly on MVS, the external
references greater than 8 characters need to be redefined to 8 characters or less.
The data set USERDEFS.H contains a template for the information to be redefined.

The -inc option allows you to specify the data set name of a header data set that
contains redefines specific to your programs and stubs. If the -inc option is
specified, the NIDL compiler generates code to #include the user-specified -inc data
set name in the stub and switch code that it generates.

For example, the BANK sample program has a BANKDEFS.H data set, where all of
the BANK external names greater than 8 characters are redefined. When the NIDL
compiler is run against the BANK.IDL data set, if you specified -inc bankdefs, the
#include for this data set is automatically generated in the two stubs and switch
programs. The following is an example of the code:
#ifdef IBM370
include "ncsdefs.h"
include "bankdefs.h"
#endif

Converting C identifiers using the CPP program
All of the NCS RPC run-time library routines and most of the NCS constants and
data types contain a $ character. For example, the routine you call to register your
server with RPC run-time is rpc_$register. The routine you call to register your
server with the location broker is lb_$register.

IBM C/370, based on ANSI standards, does not allow a $ to be used as a correct
character in a C identifier. The IBM C/370 preprocessor does not allow you to
redefine a $ to another character. NCS provides a routine called CPP for systems
that do not allow a $ in C identifiers. The NCS CPP program reads a C source data
set, expands macros and include data sets, and writes an input for the C compiler.
The most important function that the CPP program performs for MVS NCS users is
that it converts every $ to an underscore (_) when it occurs in a C identifier.

300 z/OS V1R4.0 CS: IP Programmer’s Reference

Before any of your code or the stub code can be compiled, all occurrences of a $ in
a C identifier must be converted to an underscore (_). NCS uses CPP to do this.

Note: Because CPP does not contain all the functions of the C/370 preprocessor,
there can be times when you need to modify your code to make it
acceptable to CPP, even though C/370 might have accepted it.

A CLIST called RUNCPP is provided to assist you in invoking the CPP program.
You can use this CLIST, or invoke CPP directly. RUNCPP is a member of
hlq.SEZAINST.

Use the RUNCPP CLIST command in the following format:

__ RUNCPP data_set_name data_set_type _`

Parameter Description

data_set_name
Specifies the name of the data set used as input to NCS CPP.

data_set_type Specifies the data set type.

To run CPP with the data set BANK.C@CSTUB as input, enter the following:
RUNCPP BANK C@CSTUB

The RUNCPP CLIST has the most frequently used CPP run-time options hard
coded into it. IBM recommends using RUNCPP, but if you must use options that are
not specified with RUNCPP, invoke CPP directly.

For portability reasons, you should leave the $ in all the RPC run-time routines,
constants, and data types. CPP should be run against your code after you run
NIDL. In this way, the client stub and switch or server stub can be moved to a
system that supports the $. For portability to other systems, you should always
maintain the version of your code that contains the $.

For programs that are not run on any system other than IBM MVS, you can
permanently change $ to (_), so that you do not have to use CPP. Then, only the
client stub and switch or the server stub has to be run through the CPP routine. In
some cases, this is the preferred solution, especially if you need the full function of
the C/C++ for z/OS preprocessor and compiler and CPP does not include this
support. For example, many AD/Cycle C/370 header files contain preprocessor
directives that CPP does not understand. If you are including AD/Cycle C/370
header files in your application, you should manually change $ to underscore (_) in
your application and any included header files so that you do not have to run CPP.

CPP does not support C include files that are members of a partitioned data set.
Any NCS C header files that are included by your data set must be copied to your
user ID. The following are the members of hlq.SEZACMAC that you might need to
copy:

Member Data set name
ncssock1 user_id.socket.h
ncsrpc user_id.rpc.h
base user_id.base.h
conv user_id.conv.h
glb user_id.glb.h
bsdtocms user_id.bsdtocms.h

Chapter 9. Network Computing System (NCS) 301

idl@base user_id.idl@base.h
lb user_id.lb.h
llb user_id.llb.h
nbase user_id.nbase.h
ncsdefs user_id.ncfdefs.h
ncssock user_id.ncssock.h
pfm user_id.pfm.h
rrpc user_id.rrpc.h
uuid user_id.uuid.h

Any C/370 standard header files that are included by your data set must be copied
from the C/370 product header partitioned data set (hlq.SEZACMAC).

Compiling and linking NCS programs
Following are the steps needed to create, build, and execute an NCS application:

1. Set up

Copy RUNNIDL and RUNCPP from hlq.SEZAINST to one of your
system-supported CLIST libraries.

2. Write the IDL description of the client and server applications.

Write your NIDL interface program and client or server code, and your
userdefs-type header file that redefines your long names.

3. Run NIDL

v Copy any imported NCS IDL files from hlq.SEZAINST to your user ID.

v Run the NIDL compiler using your IDL data set as input.

RUNNIDL middle_qualifier IDL INC(userdefs)

If your data set is user_id.SAMPLE.IDL and your header file is
user_id.USERDEFS.H, the command to run is:

RUNNIDL SAMPLE IDL INC(userdefs)

4. Convert $ to _

You can convert any identifiers containing a $ either using CPP or manually.

v Run CPP

– Copy any included header files from the partitioned data set in which it
resides to your user ID.

– Run CPP against all of your code, the client stub and switch, and the
server stub.

RUNCPP middle_qualifier low_level_qualifier

If your data set is user_id.SAMPLE.C, run the following command:

RUNCPP SAMPLE C

v Manually convert $ to underscore (_):

– Use an editor to convert all occurrences of $ to _ in all of your code, the
client stub and switch, and the server stub.

– Copy to a partitioned data set any C header files that contain a $ and that
are included by your code, the client stub or switch, or the server stub.
Edit the C header files in the partitioned data set to convert all
occurrences of $ to _. During compilation, this partitioned data set must be
specified on the SYSLIB statement ahead of hlq.SEZACMAC.

302 z/OS V1R4.0 CS: IP Programmer’s Reference

5. Compile and Link

You can use several methods to compile, link-edit, and execute your C/C++ for
z/OS source program in MVS. This section contains information about the
additional data sets that you must include to run the C data sets generated by
RUNCPP under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name
Contents

user_id.SAMPLE.CPPOUT
Sequential data set that contains the C program generated by RUNCPP.

user_id.OBJ
A partitioned data set that contains the compiled versions of C programs
as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD
A partitioned data set that contains the link-edited versions of C
programs as its members.

user_id.HDRS
A partitioned data set that contains C header files as its members.

Sample compile cataloged procedure additions
Include the following in the compile step of your cataloged procedure. Cataloged
procedures are included in the IBM-supplied samples for your z/OS system.

Add the following to the CPARM parameter:

CPARM=‘DEF(IBM390)’

Add the following statement as the first //SYSLIB DD statement.

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

Note: If you do not run CPP and your C source file includes either socket.h or
rpc.h, you must copy the NCS versions of these files (ncssock1 and ncsrpc)
from hlq.SEZACMAC to user_id.HDRS and rename them to socket and rpc.
user_id.HDRS must then be specified on the SYSLIB statement ahead of
hlq.SEZACMAC.

//SYSLIB DD DSN=user_id.HDRS,DISP=SHR
DD DSN=hlq.SEZACMAC,DISP=SHR

Sample link-edit cataloged procedure additions
Include the following in the link-edit step of your cataloged procedure.

v Add the following statements as the first //SYSLIB DD statement:

// DD DSN=hlq.SEZALIBN,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

v Add the following // USERLIB DD statement:

//USERLIB DD DSN=user_id.OBJ,DISP=SHR

Chapter 9. Network Computing System (NCS) 303

All entry points are not defined as external references in hlq.SEZALIBN. You
must include the following when you link-edit your application code.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

v Create a member SAMPLE of partitioned data set user_id.LOADLIST and add
the necessary objects to link to SAMPLE.

For example, to create SAMPLE load module with three objects (SAMPLE,
SAMPLE@C, SAMPLE@W), the corresponding contents of SAMPLE in
user_id.LOADLIST would be:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(SAMPLE)
INCLUDE USERLIB(SAMPLE@C)
INCLUDE USERLIB(SAMPLE@W)
MODE AMODE(31)
ENTRY CEESTART

Note: For more information about compiling and linking, refer to the z/OS C/C++
User’s Guide.

Running UUID@GEN
The NCS program UUID@GEN generates universal unique identifiers. The
UUID@GEN data set is a member of hlq.SEZALOAD.

For more information about using UUID@GEN, refer to the NCS for IBM AIX/ESA
Planning and Administration Guide.

Use the following format to invoke the UUID@GEN.

__ UUID@GEN _`

NCS sample programs
The source code for the following NCS sample programs is included in
hlq.SEZAINST:
v BANK
v NCSSMP
v BINOP

See “Compiling and linking NCS programs” on page 302 for step-by-step
instructions on compiling, link-editing, and running the sample programs. For
specific instructions on building and running each sample, see “Compiling, linking,
and running the sample BINOP program” on page 305, “Compiling, linking, and
running the NCSSMP program” on page 310, and “Compiling, linking, and running
the sample BANK program” on page 315.

304 z/OS V1R4.0 CS: IP Programmer’s Reference

|

Implement the BINOP sample program on your system, then run either the
NCSSMP program or BANK. BINOP uses a well-known port rather than the NCS
location broker. The BINOP sample program can help verify NCS on your system.

When running the NIDL compiler against any of the sample program IDL data sets,
ensure that you specify the include data set. For example, to run NIDL against the
BANK.IDL data set, enter the following:
RUNNIDL BANK IDL inc (bankdefs)

The NCSSMP sample program
The following is an example of an NCS sample program. It includes the following
program segments:
v NCS redefines for this sample program
v Instructions to compile and run the sample program on MVS

The source code for the following program segments are included in hlq.SEZAINST:

v NCSSERV1 (NCS server)

v NCSCLNT1 (NCS client)

v NCSSMPI (NCS NIDL interface)

NCS sample redefines
The following is an example of a redefine data set that is needed if this NCS
sample program is to run on MVS:
/***
* Redefines for NCS Sample Program *
* On IBM VM or MVS operating systems external references longer *
* than 8 characters must be redefined to 8 characters or less. *
* This file must be included in the Sample Programs and stubs. *
**/

#define binop_server_epv binSEpv
#define binop_client_epv binCEpv
#define binop_add binAdd
#define getNCShandle binGtHnd

Compiling, linking, and running the sample BINOP program
The NCS sample program BINOP consists of the following data sets, which are
members of hlq.SEZAINST:

Sample data set
Description

BINOPR Describes how to run the BINOP sample program.

BINOPSC Contains C source code for the BINOP server program.

BINOPCC Contains C source code for the BINOP client program.

BINOP Contains C source code for the BINOP remote subroutine.

BINOPI Contains the interface definition language data set for BINOP
sample programs used as input to the NIDL compiler.

BINDEFS Indicates the header data set containing the redefines of external
references, greater than 8 characters in length, used in the BINOP
sample programs.

Chapter 9. Network Computing System (NCS) 305

|

|

|

|

The following sections describe steps required to run the sample BINOP program
successfully.

v “Setup”

v “Compile” on page 307

v “Link” on page 308

v “Run” on page 310

Note: If you have a problem with any of these steps, you must resolve them before
you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS CS has been installed and is operational on your
system.

Setup
Before you begin: You need to know how to access data sets and copy files.

Perform the following steps as prerequisites to compiling, linking, and running the
sample BINOP program.

1. Copy the sample data sets from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(BINOP) user_id.binop.c

hlq.SEZAINST(BINOPCC) user_id.binopc.c

hlq.SEZAINST(BINOPSC) user_id.binops.c

hlq.SEZAINST(BINDEFS) user_id.bindefs.h

hlq.SEZAINST(BINOPI) user_id.binop.idl

2. Copy the imported data sets from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(BASEI) user_id.base.idl

hlq.SEZAINST(NBASEI) user_id.nbase.idl

hlq.SEZAINST(RPCI) user_id.rpc.idl

3. To generate stubs, run NIDL using the following command:

RUNNIDL BINOP IDL INC(BINDEFS)

4. Copy the included C header files to your user ID.

From location To location

hlq.SEZACMAC(BASE) user_id.base.h

hlq.SEZACMAC(NBASE) user_id.nbase.h

hlq.SEZACMAC(NCSDEFS) user_id.ncsdefs.h

hlq.SEZACMAC(TYPES) user_id.types.h

hlq.SEZACMAC(BSDTIME) user_id.bsdtime.h

306 z/OS V1R4.0 CS: IP Programmer’s Reference

|

|

|

|

From location To location

hlq.SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

hlq.SEZACMAC(BSDTYPES) user_id.bsdtypes.h

hlq.SEZACMAC(IDL@BASE) user_id.idl@base.h

hlq.SEZACMAC(PFM) user_id.pfm.h

hlq.SEZACMAC(NCSRPC) user_id.rpc.h

’C’ library user_id.setjmp.h

’C’ library user_id.stdio.h

’C’ library user_id.time.h

Note: C library header files depend on the compiler you are using. For
example:

C370 2.2
C370.V2R2M0.SEDCHDRS(member-name)

AD/Cycle C/370
PGMPRD.ADCC370.V1R2M0.SEDCHDR(member-name)

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP BINOPS C
RUNCPP BINOPC C
RUNCPP BINOP@S C@SSTUB
RUNCPP BINOP@C C@CSTUB
RUNCPP BINOP@W C@CSWTCH
RUNCPP BINOP C

You know you are done when RUNCPP completes with no errors.

Compile
Before you begin: You need to have completed the steps in “Setup” on page 306.

You can use several methods to compile, link-edit, and execute your program in
MVS. The following explains how to compile your C data sets generated by
RUNCPP under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name Contents

user_id.OBJ A partitioned data set that contains the compiled versions of C
programs as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD A partitioned data set that contains the link-edited versions of C
programs as its members.

Chapter 9. Network Computing System (NCS) 307

|

In order for the program to compile correctly, you must make changes to the EDCC
cataloged procedure, which is supplied with IBM C for zSeries™ Compiler Licensed
Program (5688-187).

Perform the following steps to compile your program.

1. Remove the OUTFILE and OUTDCB parameters.

2. Add the following to the CPARM parameter:

CPARM=‘DEF(IBMCPP,IBM370)’,

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following:

//SYSIN DD DSN=user_id..&INFILE..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id..OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

5. Submit the compile job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following:

/s EDCC,INFILE=BINOPS
/s EDCC,INFILE=BINOPC
/s EDCC,INFILE=BINOP@S
/s EDCC,INFILE=BINOP@C
/s EDCC,INFILE=BINOP@W
/s EDCC,INFILE=BINOP

You know you are done when no errors are received.

Link
Before you begin: You need to have completed the steps in “Setup” on page 306
and “Compile” on page 307.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure, which is supplied with IBM C for zSeries Compiler Licensed
Program (5688-187).

Perform the following steps to link-edit your program.

1. Remove the OUTFILE parameter.

2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=hlq.SEZALIBN,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

308 z/OS V1R4.0 CS: IP Programmer’s Reference

|
|

|
|
|
|
|
|

3. Add the following //USERLIB DD statement:

//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following:

//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following lines when you link-edit your application code, because not
all entry points are defined as external references in hlq.SEZALIBN.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following:

//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

7. Create one member of the partitioned data set user_id.LOADLIST, by adding
the following lines to the data set BINOPC.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BINOP@C)
INCLUDE USERLIB(BINOP@W)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set user_id.LOADLIST, by
adding the following lines to the data set BINOPS.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BINOP@S)
INCLUDE USERLIB(BINOP)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following:

/s EDCL,MEM=BINOPC
/s EDCL,MEM=BINOPS

Chapter 9. Network Computing System (NCS) 309

You know you are done when no errors are received.

Run
Before you begin: You need to have completed the steps in “Setup” on page 306,
“Compile” on page 307, and “Link” on page 308.

Perform the following steps to run your program.

1. Start the NCS server sample program on one MVS user ID by entering the
following command:

CALL ‘user_id.LOAD(BINOPS)’ ‘2’

2. Start the NCS client on a different MVS user ID by entering the following
command:

CALL ‘user_id.LOAD(BINOPC)’ ‘hostname 2 3’

where hostname is the name of the system that the server is running on.

You know you are done when the program runs successfully.

Compiling, linking, and running the NCSSMP program
The NCSSMP sample program consists of the following data sets, which are
members of hlq.SEZAINST:

NCSSMPR Describes the NCS sample program.

NCSSERV1 Contains C source code for the server for the NCS sample
program.

NCSCLNT1 Contains C source code for the client for the NCS sample program.

NCSSMPI Contains the interface definition language data set for the NCS
sample program used as input to the NIDL compiler.

NSMPDEFS Indicates the header data set containing the redefines of external
references, greater than 8 characters in length, used in the NCS
sample program.

For an example of the source code, see “The NCSSMP sample program” on
page 305.

The following sections describe steps required to run the NCSSMP program
successfully.

v “Setup” on page 311

v “Compile” on page 312

v “Link” on page 313

v “Run” on page 314

310 z/OS V1R4.0 CS: IP Programmer’s Reference

Note: If you have a problem with any of these steps, you must resolve them before
you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS CS has been installed and is operational on your
system. Also, ensure that the NCS Global Location Broker is running
somewhere on your network.

Setup
Before you begin: You need to know how to access data sets and copy files.

Perform the following steps as prerequisites to compiling, linking, and running the
NCSSMP program.

1. Copy the sample data sets from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(NCSSERV1) user_id.ncsserv1.c

hlq.SEZAINST(NCSCLNT1) user_id.ncsclnt1.c

hlq.SEZAINST(NCSSMPI) user_id.ncssmp.idl

hlq.SEZAINST(NSMPDEFS) user_id.nsmpdefs.h

2. Copy the imported data sets from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(RPCI) user_id.rpc.idl

hlq.SEZAINST(BASEI) user_id.base.idl

hlq.SEZAINST(NBASEI) user_id.nbase.idl

3. To generate stubs, run NIDL using the following command:

RUNNIDL NCSSMP IDL INC(nsmpdefs)

4. Copy the data sets included by CPP to your user ID.

From location To location

hlq.SEZACMAC(NCSDEFS) user_id.ncsdefs.h

hlq.SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

hlq.SEZACMAC(BASE) user_id.base.h

hlq.SEZACMAC(IDL@BASE) user_id.idl@base.h

hlq.SEZACMAC(NBASE) user_id.nbase.h

hlq.SEZACMAC(LB) user_id.lb.h

hlq.SEZACMAC(GLB) user_id.glb.h

hlq.SEZACMAC(TYPES) user_id.types.h

hlq.SEZACMAC(BSDTYPES) user_id.bsdtypes.h

hlq.SEZACMAC(BSDTIME) user_id.bsdtime.h

hlq.SEZACMAC(PFM) user_id.pfm.h

Chapter 9. Network Computing System (NCS) 311

|

From location To location

C library user_id.stdio.h

C library user_id.setjmp.h

Note: C library header files depend on the compiler you are using. For example:

C370 2.2
C370.V2R2M0.SEDCHDRS(member-name)

AD/Cycle C/370
PGMPRD.ADCC370.V1R2M0.SEDCHDR(member-name)

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP NCSSERV1 C
RUNCPP NCSCLNT1 C
RUNCPP NCSSMP@S C@SSTUB
RUNCPP NCSSMP@C C@CSTUB
RUNCPP NCSSMP@W C@CSWTCH

You know you are done when RUNCPP completes with no errors.

Compile
Before you begin: You need to have completed the steps in “Setup” on page 311.

You can use several methods to compile, link-edit, and execute your program in
MVS. This section explains how to compile your C data sets generated by
RUNCPP under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

user_id.OBJ A partitioned data set that contains the compiled versions of C
programs as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD A partitioned data set that contains the link-edited versions of C
programs as its members.

In order for the program to compile correctly, you must make changes to the EDCC
cataloged procedure, which is supplied with IBM C for zSeries, Compiler Licensed
Program (5688-187).

Perform the following steps to compile your program.

1. Remove the OUTFILE and OUTDCB parameters.

2. Add the following to the CPARM parameter:

CPARM=‘DEF(IBMCPP,IBM370)’,

312 z/OS V1R4.0 CS: IP Programmer’s Reference

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following:

//SYSIN DD DSN=user_id..&MEM..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id..OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

5. Submit the compile job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following:

/s EDCC,MEM=NCSSERV1
/s EDCC,MEM=NCSCLNT1
/s EDCC,MEM=NCSSMP@S
/s EDCC,MEM=NCSSMP@C
/s EDCC,MEM=NCSSMP@W

You know you are done when no errors are received.

Link
Before you begin: You need to have completed the steps in “Setup” on page 311
and “Compile” on page 312.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure, which is supplied with IBM C for zSeries, Compiler Licensed
Program (5688-187).

Perform the following steps to link-edit your program.

1. Remove the OUTFILE parameter.

2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=hlq.SEZALIBN,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

3. Add the following //USERLIB DD statement:

//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following:

//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following when you link-edit your application code, because not all
entry points are defined as external references in hlq.SEZALIBN.

Chapter 9. Network Computing System (NCS) 313

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following:

//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

7. Create one member of the partitioned data set userid.LOADLIST by adding the
following lines to the data set NCSCLNT1.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(NCSSMP@C)
INCLUDE USERLIB(NCSSMP@W)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set userid.LOADLIST by
adding the following lines to the data set NCSSERV1.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(NCSSMP@S)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following:

/s EDCL,MEM=NCSCLNT1
/s EDCL,MEM=NCSSERV1

You know you are done when no errors are received.

Run
Before you begin: You need to have completed the steps in “Setup” on page 311,
“Compile” on page 312, and “Link” on page 313.

Perform the following steps to run your program.

1. Make sure that the Local and Global Location Brokers are running.

2. Start the NCS server sample program on one MVS user ID by entering the
following command:

CALL ‘user_id.LOAD(NCSSERV1)’

314 z/OS V1R4.0 CS: IP Programmer’s Reference

3. Start the NCS client on a different MVS user ID by entering the following
command:

CALL ‘user_id.LOAD(NCSCLNT1)’ ‘5 32’

You know you are done when the program runs successfully.

Compiling, linking, and running the sample BANK program
The NCS sample program BANK consists of the following data sets, which are
members of hlq.SEZAINST:

Sample data set Description

BANKR Describes how to run the BANK sample program.

BANKDC Contains C language source code for the BANK
server program.

BANKC Contains C language source code for the BANK
client program.

UTILC Contains utility routines used by the BANK server
and client programs.

UTILH Indicates a header data set used in the BANK
sample program.

UUIDBIND Contains autobind and unbind source code routines
used by the BANK server and client programs.

BANKIDL Contains the interface definition language data set
for the BANK sample programs used as input to the
NIDL compiler.

SHAWMUT Contains input data for BANK server program.

BAYBANKS Contains input data for BANK server program.

BANKDEFS Indicates a header data set containing the redefines
of external references, greater than 8 characters in
length, used in the BANK sample programs.

The following sections describe steps required to run the sample BANK program
successfully.

v “Setup” on page 316

v “Compile” on page 317

v “Link” on page 318

v “Run” on page 320

Note: If you have a problem with any of these steps, you must resolve them before
you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS CS has been installed and is operational on your
system. Also, ensure that the NCS Global Location Broker is running
somewhere on your network and the Local Location Broker is running on the
client system.

Chapter 9. Network Computing System (NCS) 315

Setup
Before you begin: You need to know how to access data sets and copy files.

Perform the following steps as prerequisites to compiling, linking, and running the
BANK program.

1. Copy the sample data sets from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(BANKDC) user_id.bankd.c

hlq.SEZAINST(BANKC) user_id.bank.c

hlq.SEZAINST(UTILC) user_id.util.c

hlq.SEZAINST(UUIDBIND) user_id.uuidbind.c

hlq.SEZAINST(UTILH) user_id.util.h

hlq.SEZAINST(BANKIDL) user_id.bank.idl

hlq.SEZAINST(SHAWMUT) user_id.shawmut.bank

hlq.SEZAINST(BAYBANK) user_id.baybank.bank

hlq.SEZAINST(BANKDEFS) user_id.bankdefs.h

2. Copy the data sets imported by IDL from hlq.SEZAINST to your user ID.

From location To location

hlq.SEZAINST(BASEI) user_id.base.idl

hlq.SEZAINST(NBASEI) user_id.nbase.idl

hlq.SEZAINST(RPCI) user_id.rpc.idl

3. To generate stubs, run NIDL using the following command:

RUNNIDL BANK IDL INC(bankdefs)

4. Copy the data sets included by CPP to your user ID.

From location To location

hlq.SEZACMAC(NCSDEFS) user_id.ncsdefs.h

hlq.SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

hlq.SEZACMAC(BASE) user_id.base.h

hlq.SEZACMAC(IDL@BASE) user_id.idl@base.h

hlq.SEZACMAC(NBASE) user_id.nbase.h

hlq.SEZACMAC(LB) user_id.lb.h

hlq.SEZACMAC(GLB) user_id.glb.h

hlq.SEZACMAC(TYPES) user_id.types.h

hlq.SEZACMAC(BSDTYPES) user_id.bsdtypes.h

hlq.SEZACMAC(BSDTIME) user_id.bsdtime.h

316 z/OS V1R4.0 CS: IP Programmer’s Reference

From location To location

hlq.SEZACMAC(PFM) user_id.pfm.h

hlq.SEZACMAC(UUID) user_id.uuid.h

’C’ library user_id.stdio.h

’C’ library user_id.setjmp.h

’C’ library(ERRNO) user_id.errno.h

’C’ library(TIME) user_id.time.h

Note: ’C’ library header files depend on the compiler you are using. For example:

C370 2.2
C370.V2R2M0.SEDCHDRS(member-name)

AD/Cycle C/370
PGMPRD.ADCC370.V1R2M0.SEDCHDR(member-name)

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP UTIL C
RUNCPP UUIDBIND C
RUNCPP BANKD C
RUNCPP BANK C
RUNCPP BANK@S C@SSTUB
RUNCPP BANK@C C@CSTUB
RUNCPP BANK@W C@CSWTCH

You know you are done when RUNCPP completes with no errors.

Compile
Before you begin: You need to have completed the steps in “Setup” on page 316.

You can use several methods to compile, link-edit, and execute your program in
MVS. This section explains how to compile your C data sets generated by
RUNCPP under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name Contents

user_id.OBJ A partitioned data set that contains the compiled
versions of C programs as its members.

user_id.LOADLIST A partitioned data set that contains the loadlist as
its members.

user_id.LOAD A partitioned data set that contains the link-edited
versions of C programs as its members.

In order for the program to compile correctly, you must make changes to the EDCC
cataloged procedure, which is supplied with IBM C for zSeries, Compiler Licensed
Program (5688-187).

Chapter 9. Network Computing System (NCS) 317

|

Perform the following steps to compile your program.

1. Remove the OUTFILE and OUTDCB parameters.

2. Add the following to the CPARM parameter:

CPARM=‘DEF(IBMCPP,IBM370)’,

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following:

//SYSIN DD DSN=user_id..&MEM..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id..OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

5. Submit the compile job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following:

/s EDCC,MEM=BANKD
/s EDCC,MEM=BANK
/s EDCC,MEM=BANK@S
/s EDCC,MEM=BANK@C
/s EDCC,MEM=BANK@W
/s EDCC,MEM=UTIL
/s EDCC,MEM=UUIDBIND

You know you are done when no errors are received.

Link
Before you begin: You need to have completed the steps in “Setup” on page 316
and “Compile” on page 317.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure, which is supplied with IBM C for zSeries, Compiler Licensed
Program (5688-187).

Perform the following steps to link-edit your program.

1. Remove the OUTFILE parameter.

2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=hlq.SEZALIBN,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

3. Add the following //USERLIB DD statement:

318 z/OS V1R4.0 CS: IP Programmer’s Reference

//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following:

//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following when you link-edit your application code, because not all
entry points are defined as external references in hlq.SEZALIBN.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following:

//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

7. Create one member of the partitioned data set userid.LOADLIST by adding the
following lines to the data set BANK:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BANK@C)
INCLUDE USERLIB(BANK@W)
INCLUDE USERLIB(UTIL)
INCLUDE USERLIB(UUIDBIND)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set userid.LOADLIST by
adding the following lines to the data set BANKD:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BANK@S)
INCLUDE USERLIB(UTIL)
INCLUDE USERLIB(UUIDBIND)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following:

Chapter 9. Network Computing System (NCS) 319

/s EDCL,MEM=BANK
/s EDCL,MEM=BANKD

You know you are done when no errors are received.

Run
Before you begin: You need to have completed the steps in “Setup” on page 316,
“Compile” on page 317, and “Link” on page 318.

Perform the following steps to run your program.

1. Make sure that the Local and Global Location Brokers are running.

2. Start the NCS server sample program on one MVS user ID. To do so, enter the
following command:

CALL ‘user_id.LOAD(BANKD)’ ‘ip shawmut shawmut.bank’ asis

3. Start the NCS client on a different MVS user ID. To do so, enter the following
command:

CALL ‘user_id.LOAD(BANK)’ ‘inquire shawmut Leach’ asis

You know you are done when the program runs successfully.

320 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix A. TCP/IP in the sysplex

This appendix introduces the enhanced GETSOCKOPT function. This function
provides information to a sockets application which might allow the application to
offer better function, performance, and scalability. For specific information about
how to use GETSOCKOPT, refer to the z/OS Communications Server: IP
Application Programming Interface Guide.

Note: This enhancement does not apply to UDP or raw socket connections.

Sockets applications must be able to communicate with an appropriate partner on
any platform, but they might be able to perform better if both partners know they
are on zSeries, within the same sysplex, or on the same MVS image.

TCP sockets applications can benefit from information about the partner. Table 2
lists examples of these benefits.

Table 2. GETSOCKOPT enhancement benefits

Scenario Potential benefit

Same Cluster (sysplex) Avoid parameter conversions, because both
sides of the connection use the same
machine architectures and data
representation (z/OS).

Same MVS image Share memory information that is costly to
generate (for example, security contexts).

Internal link Link communications are not exposed
outside the cluster (for example, S/390® XCF
or sysplex internal CTC). This means that
application security might cost less.

For example, the application might not
encrypt application data.

The internal link indication is returned only when the partner is part of the same
cluster. This means that the data flows over a single link (host route) to the partner,
and the device type is one of the following:

v XCF link

v CTC

v MPCPTP, including Same Host (device IUTSAMEH)

v iQDIO

These devices are assumed to participate in the same physical security as the
cluster itself, so that the links carrying IP traffic have the same physical security as
links to the attached DASD. When the internal indication is returned, the application
can choose not to encrypt data exchanged with a partner application in the same
cluster. This saves CPU cycles and improves throughput. The application itself
determines whether or not to exploit the internal indication.

For example, exploiting the internal link indication might be used by an application
to avoid the cost of encrypting data. If an application has just established a
connection for which SSL would be the appropriate protection if the partner were
not in the sysplex, and the application has assumed or has been configured to

© Copyright IBM Corp. 1989, 2002 321

know that data within a sysplex is protected by physical security (controlled physical
access), then the application might choose to implement the following:

v Immediately after connection setup, but before initiating SSL handshaking, issue
the GETSOCKOPT call to obtain SO_CLUSTERCONNTYPE information. If the
internal link indication is not returned, proceed to initiate the SSL handshaking
with appropriate levels of encryption specified (negotiated) between the two
connection endpoints.

v If the internal link indication is returned, initiate SSL handshaking as usual to gain
the benefits of authenticating the partner, but specify only null encryption as an
encryption choice. Because support for null encryption is a required feature of
SSL, the SSL handshake is not destined to fail for architectural (IETF RFC)
reasons. It is then up to the partner to determine whether a negotiated null
encryption is acceptable to the partner or the connections should be closed.

While the expensive SSL handshaking cannot be avoided in any case, encryption of
the data exchanged between the partners can be turned off as appropriate. If the
applications were doing bulk data transfer, and normal encryption would be
triple-DES, the savings in CPU cycles might be considerable.

Additional benefits include:

v Avoiding costly application operations (such as parameter marshalling) at the
discretion of the application

v Sharing of information that provides the following:

– Reduced CPU utilization

– Reduced application workload

– Better application performance

In general, sockets applications are designed so any partners (client and server)
using the same protocol can be used to connect with each other to do useful work.
Typically, applications had to determine (for each partner) its platform and then
exchange (through application protocol) this information with its partner. In some
cases, this application level exchange cannot be performed:

v If both sides of the connection are not owned by the same company

v If the application protocol is governed by industry standards that do not include
platform-related information

The new GETSOCKOPT option reports the same image (same MVS image or
Virtual Server), same cluster (same sysplex), or cluster internal to a sockets
application when a connection is established.1 The information is determined and
reported only when specifically requested, so that the application not needing to use
the function does not incur the expense. This option performs similarly whether the
sockets application was the listening (server) application or the initiating (client)
application.

1. When all of the TCP/IP stacks in the sysplex have been initialized and are in a steady state, they will have exchanged information
within the sysplex, such that each stack recognizes all of the IP addresses supported by the other stacks in the sysplex, and which
particular stacks support which IP addresses. The name of the MVS image for each stack is also made known to all other stacks.
Thus, for any TCP connections, a stack can determine from the partner IP address whether or not the stack supporting the partner
application is part of the same sysplex, and whether the stack resides in the same MVS image as the local stack.

322 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix B. Well-known port assignments

This appendix lists the well-known port assignments for transport protocols TCP and
UDP, and includes port number, keyword, and a description of the reserved port
assignment. You can also find a list of these well-known port numbers in the
hlq.ETC.SERVICES data set.

Table 3 lists the well-known port assignments for TCP.

Table 3. TCP well-known port assignments

Port number Keyword Assigned to Services description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat netstat who is up or netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet telnet telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain name server domain name server

57 mtp private terminal access private terminal access

69 tftp TFTP Trivial File Transfer protocol

77 rje netrjs any private RJE service

79 finger finger finger

80 http http Web Server

87 link ttylink any private terminal link

95 supdup supdup SUPDUP protocol

101 hostname hostname nic hostname server, usually from SRI-NIC

109 pop postoffice Post Office Protocol

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

119 untp readnews untp USENET News Transfer Protocol

123 ntp NTP Network Time Protocol

160–223 reserved

© Copyright IBM Corp. 1989, 2002 323

Table 3. TCP well-known port assignments (continued)

Port number Keyword Assigned to Services description

712 vexec vice-exec Andrew File System authenticated service

713 vlogin vice-login Andrew File System authenticated service

714 vshell vice-shell Andrew File System authenticated service

2001 datasetsrv Andrew File System service

2106 venus.itc Andrew File System service, for the Venus
process

Well-known UDP port assignments
Table 4 lists the well-known port assignments for UDP.

Table 4. Well-known UDP port assignments

Port number Keyword Assigned to Services description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain nameserver domain name server

69 tftp TFTP Trivial File Transfer Protocol

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

135 llbd NCS LLBD NCS local location broker daemon

160–223 reserved

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the Venus
process

2002 rfilebulk Andrew File System service, for the Venus
process

2003 rfilesrv Andrew File System service, for the Venus
process

2018 console Andrew File System service

324 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 4. Well-known UDP port assignments (continued)

Port number Keyword Assigned to Services description

2115 ropcons Andrew File System service, for the Venus
process

2131 rupdsrv assigned in pairs; bulk must be srv +1

2132 rupdbulk assigned in pairs; bulk must be srv +1

2133 rupdsrv1 assigned in pairs; bulk must be srv +1

2134 rupdbulk1 assigned in pairs; bulk must be srv +1

Note: Do not use UDP port numbers in the range 12000–12004; these are
reserved for EE usage.

Appendix B. Well-known port assignments 325

326 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix C. Programming interfaces for providing
classification data to be used in differentiated services
policies

Applications and users of TCP/IP networks may have different requirements for the
service they receive from those networks. A network that treats all traffic as best
effort may not meet the needs of such users. Service differentiation is a mechanism
to provide different service levels to different traffic types based on their
requirements and importance in an enterprise network. For example, it might be
critical to provide Enterprise Resource Planning (ERP) traffic better service during
peak hours than that of FTP or web traffic. The overall service provided to
applications or users, in terms of elements such as throughput and delay, is termed
Quality of Service (QoS).

One aspect of QoS is Differentiated Services (DS), which provides QoS to broad
classes of traffic or users, for example all outbound web traffic accessed by a
particular subnet. z/OS provides support for DS by allowing network administrators
to define policies that describe how different z/OS TCP/IP workload traffic should be
treated. Administrators can define service policy rules that identify desired
workloads and map them to service policy actions that dictate the DS attributes
assigned to these workloads. For more information on QoS and DS refer to z/OS
Communications Server: IP Configuration Guide.

Service policy rules can specify generic attributes to identify a given workload, such
as the server’s well-known port or jobname. However, there are cases where a
more granular level of classification for a server’s outgoing TCP/IP traffic is desired.
For example, a server application may provide services for several different types of
requests using a single well-known port. A network administrator may want to be
able to specify unique DS attributes for each service type the application supports.
One way of accomplishing this is by allowing applications to provide additional
information that can be used by an administrator to define more granular service
policy rules and actions. The programming interfaces described in this section
provide this capability.

Application defined policy classification data can be specified using extensions to
the sendmsg() socket API. The sendmsg() API is similar to other socket APIs, such
as send() and write() that allow an application to send data, but also provides the
capability of specifying ancillary data. Ancillary data allows applications to pass
additional option data to the TCP/IP protocol stack along with the normal data that
is sent to the TCP/IP network. This ancillary data can be used by the application to
define the attributes of the outgoing traffic for a particular TCP connection or for the
specific data being sent in that sendmsg() invocation. These extensions to the
sendmsg() API are only available to applications using the TCP protocol and the
following socket API libraries:

v z/OS IBM C/C++ sockets with the z/OS Language Environment®. For more
information on these APIs refer to z/OS C/C++ Run-Time Library Reference.

v z/OS UNIX System Services Assembler Callable services socket APIs. For more
information on these APIs refer to z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

The policy classification data is defined by the application and contains one (or
both) of the following two formats:

© Copyright IBM Corp. 1989, 2002 327

v Application defined token: This token is a free format character string that can
represent any application defined resource (for example, as transaction identifier,
user ID, URL, and so on). When an application passes this token in sendmsg(),
TCP/IP will invoke the policy classification function passing it the
application-defined token in addition to any of the existing classification attributes
(local/remote IP address and port, jobname, and so on). The application defined
token maps to the ApplicationData attribute of a DS policy rule.

v Application priority levels: An application specified priority that maps to one of
five predefined QoS service levels: Expedited, High, Medium, Low and Best
Effort. Applications using this format of application classification data need to
map their outgoing data types to one of these priority levels. For example, the
application may already have a concept of transaction priority that it can use to
map to one of these priority levels. It is important to note that the priority
specified by the application does not automatically translate to a QoS service
level. The actual service level assigned is derived by the contents of the service
policy. Application priority rules are mapped to the ApplicationPriority attribute of
a DS policy rule.

Applications may decide to pass classification data of either format or for both
formats. The latter option allows applications to specify the same application
defined token yet associate it with different priorities depending on the type of
request being processed. For example, an application can pass an application
token of ORDER and a HIGH priority for one user and a token of ORDER with a
LOW priority for another user. The policy administrator would then be able to
distinguish the service level assigned to these two different classes of users. When
passing classification data on the sendmsg() API, applications also need to
determine the scope of the classification:

v Connection-Level: The DS policy action assigned will be used for all traffic on
this TCP connection until another sendmsg() with different classification data is
specified.

v Message-Level: The DS policy action assigned will be used only for the
outgoing data passed on this sendmsg() invocation. Any future data sent on this
connection without the specification of any classification data will use the original
DS policy action that was assigned to this TCP connection.

Passing application classification data on SENDMSG
A key difference in the sendmsg() API versus the more common send() API is that
most parameters are passed in a message header input parameter. The mapping
for the message header is defined in socket.h for C/C++ and in the BPXYMSGH
macro for users of the UNIX System Services Assembler Callable services. For
simplicity, only the C/C++ version of the data structures are shown in this section:
struct msghdr {

void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data */
size_t msg_controllen; /* ancillary data length */
int msg_flags; /* flags on received msg */

};

The following are some key points regarding the usage of sendmsg() for the
purpose of passing application defined classification data:

328 z/OS V1R4.0 CS: IP Programmer’s Reference

v Since application policy classification data is only supported for TCP sockets, the
msg_name and msg_namelen parameters are not applicable.

v Data to be sent using sendmsg() needs to be described in the msg_iov structure.

v The address of the ancillary data is passed in the msg_control field.

v msg_controllen contains the length of the ancillary data passed.

Note: If multiple ancillary data sections are passed, this length should reflect the
total length of ancillary data sections.

v msg_flags is not applicable for sendmsg()

The ancillary data (in this case the application classification data) is pointed to by
the msg_control parameter. This msg_control pointer points to the following
structure (C/C++ example shown below) that describes the ancillary data (also
defined in socket.h and BPXYMSGH respectively):
struct cmsghdr {

size_t cmsg_len; /* data byte count includes hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by u_char cmsg_data[]; */

};

v The cmsg_len should be set to the length of the cmsghdr plus the length of all
application classification data that follows immediately after the cmsghdr. This is
represented by the commented out cmsg_data field.

v The cmsg_level must be set to the constant IPPROTO_IP for AF_INET sockets
and IPPROTO_IPV6 for AF_INET6 sockets. IPPROTO_IP and IPPROTO_IPV6
are defined in in.h and BPXYSOCK.

v The cmsg_type must be set to the constant IP_QOS_CLASSIFICATION_DATA
(defined in header file ezaqosdc.h for C/C++ users and in macro EZAQOSDA for
assembler users). The header file and macro are both shipped in the
hlq.SEZANMAC data set (hlq refers to the High Level qualifier used when the
product was installed on your system). This data set must be available in the
concatenation when compiling or assembling a part that makes use of these
definitions.

The data that follows the cmsghdr structure is described by the following structure:
struct ip_qos_classification_data {

int ip_qos_version; /* Version of structure */
int ip_qos_classification_scope; /* Classification Scope */
int ip_qos_classification_type; /* Type of QoS classification */
u_char ip_qos_reserved[12]; /* Reserved for IBM use */
int ip_qos_appl_token_len; /* Length of application data */
/* u_char ip_qos_appl_token[128]; /* Application Classification Token*/
}

The ip_qos_classification_data structure should be filled in as follows:

v ip_qos_version: This field indicates version of the structure. This must be filled in
using the constant IP_QOS_CURRENT_VERSION.

v ip_qos_classification_scope: Specify a connection level scope (use constant
IP_QOS_CONNECTION_LEVEL) or a message level scope (constant
IP_QOS_MESSAGE_LEVEL).

Connection level scope indicates that the DS policy action assigned by the way
of classification of this message will remain in effect for all subsequent messages
sent until a sendmsg() with new classification data is issued. Message level
scope indicates that the DS policy action assigned will only be used for the
message data included in this sendmsg() invocation. Future data sent without

Appendix C. Programming interfaces for providing classification data to be used in differentiated services policies 329

|
|
|

classification data will inherit the previous connection level DS policy action
assignment (from last Connection Level classification by the way of sendmsg() or
from the original TCP connection classification during connection establishment).

v ip_qos_classification_type: This specification indicates the type of classification
data being passed. An application can choose to pass an application defined
token, an application specified priority, or both a token and a priority. If the latter
option is selected the two selected classification types should be logically ORed
together. The following types can be specified:

– Application defined token classification. A single type should be specified. If
more than one type is specified the results are unpredictable.

- IP_SET_QOSLEVEL_W_APPL_TOKEN_ASCII: This indicates that the
classification data is a character string in ASCII format. When this option is
specified the application token needs to be passed in the
ip_qos_appl_token field.

Note: If the application needs to pass numerical values for the
classification data it should first convert them to printable ASCII
format. Also note that the string specified can be in mixed case and
will be used in the exact format specified for comparison purposes.

- IP_SET_QOSLEVEL_W_APPL_TOKEN_EBCDIC: Same as above except
that the string is in EBCDIC format.

Note: The IP_SET_QOSLEVEL_W_APPL_TOKEN_ASCII does perform
slightly better than this option as the application data specified in the
policy is saved in ASCII format inside of the TCP/IP stack, thereby
eliminating the need to translate the application defined token on
every sendmsg() request.

– Application defined priority classification. A single type should be specified. If
multiple priority types are specified the results are unpredictable.

- IP_SET_QOSLEVEL_EXPEDITED: Indicates that Expedited priority is
requested.

- IP_SET_QOSLEVEL_HIGH: Indicates that High priority is requested.

- IP_SET_QOSLEVEL_MEDIUM: Indicates that Medium priority is requested.

- IP_SET_QOSLEVEL_LOW: Indicates that Low priority is requested.

- IP_SET_QOSLEVEL_BEST_EFFORT: Indicates that Best Effort priority is
requested.

– ip_qos_appl_token_len: The length of the ip_qos_appl_token specified. This
length should not include any null terminating characters.

– ip_qos_appl_token: This virtual field immediately follows the
ip_qos_classification_len field and contains the application classification token
string in either ASCII or EBCDIC format depending on which flavor of
IP_SET_QOSLEVEL_W_APPL_TOKEN_xxxx was specified for the
classification type. This field is only referenced when an application defined
token type is specified. Note that this string should not exceed 128 bytes. If a
larger size is specified, only the first 128 bytes will be used.

330 z/OS V1R4.0 CS: IP Programmer’s Reference

Additional considerations
The sendmsg() enhancements to allow for QoS classification data will only be
available through the LE C/C++ sendmsg() API and the UNIX System Services
BPX2SMS service. The sendmsg() API supported across the TCP/IP provided
socket API libraries (C, Macro, Callable, CICS®, and so on) do not currently support
the passing of ancillary data. Some additional considerations for these sendmsg()
enhancements follow:

v UNIX System Services Assembler Callable Services Environment

– Applications should ensure that the BPX2SMS (sendmsg) service is invoked.
An older version of sendmsg(), named BPX1SMS, also exists but does not
support the application classification enhancements described in this section.

– Include the EZAQOSDA macro from the hlq.SEZANMAC library for the
definitions needed for the application classification ancillary data.

– Include the BPXYSOCK and BPXYMSGH macros from SYS1.MACLIB.

v IBM C/C++ applications using the z/OS Language Environment:

– Applications need to include the following header files:

- socket.h, in.h

- ezaqosdc.h (from hlq.SEZANMAC)

v AF_INET6 considerations

The sendmsg() enhancements for QoS classification data are supported for
AF_INET6 sockets. However, they are supported only for AF_INET6 sockets
when the connection’s traffic flows over an IPv4 network (such as, the remote
partner’s IP address is an IPv4-mapped IPv6 address). This feature is not
supported for AF_INET6 sockets when the connection’s traffic flows over an IPv6
network (such as, the remote partner’s IP address is an IPv6 address); the
sendmsg() enhancements will be ignored if used on an IPv6 connection.

In order to exploit these enhancements for an AF_INET6 socket, the application
should be coded as indicated in this appendix, but should substitute
IPPROTO_IPV6 for IPPROTO_IP in the cmsghdr’s cmsg_level field.

Note: The LE C/C++ library supports 2 versions of the sendmsg() API. The key
difference is in the definition of the msghdr structure. In order to use the
correct version of sendmsg() the application needs to ensure that the macro
symbolic _OE_SOCKETS is not specified. _OE_SOCKETS causes the older
version of msghdr and sendmsg() to be used. The older version does not
support passing of application classification data.

Applications providing classification data should document the content and format of
this data so that network administrators can use this information when defining DS
policies.

Appendix C. Programming interfaces for providing classification data to be used in differentiated services policies 331

|

|
|
|
|
|
|
|

|
|
|

332 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix D. X Window System interface V11R4 and
OSF/Motif version 1.1

This appendix describes the X Window System application program interface (API).

Support is provided for two versions of the X Window System and the
corresponding OSF/Motif.

Support for X Window System Version 11 Release 4 and OSF/Motif Version 1.1 is
available as feature HIP614X and is documented here.

The current support, provided as part of the base IP support in z/OS CS, is for
X Window System Version 11 Release 6 and OSF/Motif Version 1.2 and is
documented in Chapter 6, “X Window System interface in the z/OS CS
environment” on page 159.

What is provided
The X Window System support provided with TCP/IP includes the following APIs
from the X Window System Version 11 Release 4:

v hlq.SEZAX11L (Xlib, Xmu, Xext, and Xau routines)

v hlq.SEZAOLDX (X Release 10 compatibility routines)

v hlq.SEZAXTLB (Xt Intrinsics)

v hlq.SEZAXAWL (Athena widget set)

v Header files needed for compiling X clients

v Standard MIT X clients

v Sample X clients (XSAMP1, XSAMP2, and XSAMP3)

v hlq.SEZARNT1 (a combination of the X Window System libraries listed
previously and hlq.SEZACMTX)

Note: SEZARNT1 contains the reentrant versions of the libraries.

v hlq.SEZARNT2 (Athena widget set for reentrant modules)

v hlq.SEZARNT3 (OSF/Motif widget set for reentrant modules). The SEZARNT1,
SEZARNT2, and SEZARNT3 library members are:

– Fixed block 80, in object deck format.

– Compiled with the C/370 RENT compile-time option.

– Used as input for X Window System and socket programmers who make their
programs reentrant.

– Passed to the C/370 prelinker. Use the prelink utility to combine all input text
decks into a single text deck.

The X Window System support provided with TCP/IP also includes the following
APIs based on Release 1.1 of the OSF/Motif-based widget set:

v hlq.SEZAXMLB (OSF/Motif-based widget set)

v Header files needed for compiling clients using the OSF/Motif-based widget set.

Three-dimensional graphics are available as an extension of the X Window
System. For information about using three-dimensional graphics, refer to PEXlib
Specification and C Language Binding, SR28-5166.

© Copyright IBM Corp. 1989, 2002 333

|

In addition, the X Window System support provided with TCP/IP includes support
for z/OS UNIX System Services. For information about the z/OS UNIX System
Services support provided, see “z/OS UNIX System Services support” on page 384.

Software requirements
Application programs using the X Window System API are written in C and should
be compiled, linked, and executed using the z/OS C/C++ Compiler and the run-time
environment of the Language Environment for MVS that is provided with OS/390
Release 7 or later.

To run sample X clients (XSAMP1, XSAMP2, and XSAMP3), you require IBM C for
System/370, Library Licensed Program (5688-188).

How the X Window System interface works in the MVS environment
The X Window System is a network transparent protocol that supports windowing
and graphics. The protocol is communicated between a client or application and an
X server over a reliable bidirectional byte stream. This byte stream is provided by
the TCP/IP communication protocol. In the MVS environment, X Window System
support consists of a set of application calls that create the X protocol, as
requested by the application. This application program interface allows an
application to be created, which uses the X Window System protocol to be
displayed on an X server.

In an X Window System environment, the X server distributes user input to and
accepts requests from various client programs located either on the same system or
elsewhere on a network. The X client code uses sockets to communicate with the
X server.

Figure 6 on page 335 shows a high-level abstraction of how the X Window System
works in a MVS environment. As an application writer, you need to be concerned
only with the client API in writing your application.

334 z/OS V1R4.0 CS: IP Programmer’s Reference

The communication path from the MVS X Window System application to the server
involves the client code and TCP/IP. The application program that you create is the
client part of a client-server relationship. The X server provides access to the
resources that are shared among many X applications, such as the screen,
keyboard, mouse, fonts, and graphics contexts. A single X server can control more
than one physical screen.

Each client can interact with multiple servers, and each server can interact with
multiple clients.

If your application is written to the Xlib interface, it calls XOpenDisplay() to start
communication with an X server on a workstation. The Xlib code opens a
communication path called a socket to the X server, and sends the appropriate X
protocol to initiate client-server communication.

The X protocol generated by the Window System client code uses an ISO Latin-1
encoding for character strings, while the MVS encoding for character strings is
EBCDIC. The X Window System client code in the MVS environment automatically
transforms character strings from EBCDIC to ISO Latin-1 or from ISO Latin-1 to
EBCDIC, as needed using internal translate tables.

In the MVS environment, external names must be eight characters or less. Many of
the X Window System application program interface names exceed this limit. To
support the X API in MVS, all X names longer than eight characters are remapped
to unique names using the C compiler preprocessor. This name remapping is found
in a file called X11GLUE.H, which is automatically included in your program when

MVS
Application

X11.4 Routines

TCP/IP for MVS

X server

iucv iucv

TCPIP

Address

Space

(X client)

(Xlib)

XOpenDisplay()

socket()
INTERNET

Figure 6. MVS X Window System application to server

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 335

you include the standard X header file called XLIB.H. When debugging your
application, you can refer to the X11GLUE.H file to find the remapped names of the
X API routines.

Identifying the target display
The user_id.XWINDOWS.DISPLAY data set is used by the X Window System to
identify the host name of the target display.

The following is the format of the environment variable in the
user_id.XWINDOWS.DISPLAY data set:

__ host_name:target_server
·target_screen

_`

The environment variable in the user_id.XWINDOWS.DISPLAY data set contains
the following values:

Value Description

host_name
Specifies the host name or IP address of the host machine on which the
X Window System server is running.

target_server
Specifies the number of the display server on the host machine.

target_screen
Specifies the screen to be used on the same target server.

Notes:

1. You should be aware that the userid.XWINDOWS.DISPLAY data set cannot
contain sequence numbers.

2. For information about identifying the target display in z/OS UNIX System
Services see, “Identifying the target display in z/OS UNIX System Services” on
page 386.

Application resource file
The X Window System allows you to modify certain characteristics of an application
at run time by means of application resources. Typically, application resources are
set to tailor the appearance and possibly the behavior of an application. The
application resources can specify information about an application’s window sizes,
placement, coloring, font usage, and other functional details.

On a UNIX system, this information can be found in the user’s home directory in a
file called ·Xdefaults. In the MVS environment, this data set is called
user_id·X·DEFAULTS. Each line of this data set represents resource information for
an application.

Note: For information about the application resource file in z/OS UNIX System
Services, see “z/OS UNIX System Services support” on page 384.

Figure 7 on page 337 shows an example of a set of resources specified for a
typical X Window System application.

336 z/OS V1R4.0 CS: IP Programmer’s Reference

In this example, the xclock application automatically creates a window in the lower
left corner of the screen with a digital display in orange letters on a skyblue
background.

These resources can also be set on the RESOURCE_MANAGER property of the X
server, which allows a single, central place where resources are found, that control
all applications, displayed on an X server. You can use the xrdb program to control
the X server resource database in the resource property.

xrdb is an X client that you can use either to get or to set the contents of the
RESOURCE_MANAGER property on the root window of screen 0. This property is
then used by all applications at startup to control the application resource.

Creating an application
To create an application that uses the X Window System protocol, you should study
the X Window System application program interface. In addition, sample programs
called XSAMP1, XSAMP2, and XSAMP3 (see “Using sample X Window System
programs” on page 343) illustrate simple examples of programs that use the
X Window System API. These programs are distributed with TCP/IP.

You should ensure that the first X header file your program includes is the XLIB.H
header file. This file defines a number of preprocessor symbols, which enable your
program to compile correctly. If your program uses the Xt Intrinsics, you should
ensure that the INTRINSIC.H header file is the first X header file included in your
program. This file contains a number of preprocessor symbols that allow your
program to compile correctly. In addition, these header files include the MVS header
files that remap the external names of the X Window System routines to the shorter
names used by the X Window System that is supported by TCP/IP.

X Window System header files
This section describes the X Window System, X Intrinsics, Athena widget set, and
OSF/Motif-based widget set headers used by X Window System applications.

XClock*geometry: 500x60+5-5
XClock*font: -bitstream-*-bold-r-*-33-240-*
XClock*foreground: orange
XClock*background: skyblue
XClock*borderWidth: 4
XClock*borderColor: blue
XClock*analog: false

Figure 7. Resources specified for a typical X Window System application

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 337

X Window System and Xt Intrinsics header files
The following is a list of X Window System and Xt Intrinsics headers:

ap@keysy.h
Atoms.h
Callback.h
CharSet.h
CloseHoo.h
ComposiI.h
ComposiP.h
Composit.h
Constrai.h
ConstraP.h
Converte.h
ConvertI.h
copyrigh.h
Core.h
CoreP.h
cursorfo.h
CurUtil.h
CvtCache.h
DECkeysy.h
DisplayQ.h
Drawing.h
Error.h
EventI.h
extutil.h
fd.h
InitialI.h
Initer.h

IntriniI.h
IntriniP.h
Intrinsi.h
keysym.h
keysymde.h
ks@names.h
Misc.h
MITMisc.h
mitmiscs.h
multibst.h
multibuf.h
Object.h
ObjectP.h
PassivGr.h
poly.h
Quarks.h
RectObj.h
RectObjP.h
region.h
Resource.h
Selectio.h
shape.h
shapestr.h
Shell.h
ShellP.h
StdCmap.h
StdSel.h

StringDe.h
SysUtil.h
Translat.h
VarargsI.h
Vendor.h
VendorP.h
WinUtil.h
X.h
Xatom.h
Xatomtyp.h
Xauth.h
Xct.h
Xext.h
Xkeymap.h
Xlib.h
Xlibint.h
Xlibos.h
Xllglue.h
Xmd.h
Xmu.h
Xos.h
Xproto.h
Xprotost.h
Xresourc.h
Xt@remap.h
Xtos.h
Xutil.h
XWDFile.h
X10.h

Athena widget set header files
The following is a list of the Athena widget set headers:

ACommand.h
ACommanP.h
AForm.h
AFormP.h
ALabel.h
ALabelP.h
AList.h
AListP.h
AScrollb.h
AScrollP.h
AText.h
ATextP.h
ATextSrP.h
AsciiSin.h
AscSinkP.h
AsciiSrc.h
AscSrcP.h
AsciiTex.h
AscTextP.h
Box.h

BoxP.h
Cardinal.h
Clock.h
ClockP.h
CommandI.h
Dialog.h
DialogP.h
Grip.h
GripP.h
Logo.h
LogoP.h
Mailbox.h
MailboxP.h
MenuButP.h
MenuButt.h
Paned.h
PanedP.h
Scroll.h
Simple.h
SimpleMP.h

SimpleMe.h
SimpleP.h
Sme.h
SmeBSB.h
SmeBSBP.h
SmeLine.h
SmeLineP.h
SmeP.h
StripChP.h
StripCha.h
Template.h
TemplatP.h
TextSink.h
TextSinP.h
TextSrc.h
Toggle.h
ToggleP.h
VPaned.h
Viewport.h
ViewporP.h
XawInit.h

338 z/OS V1R4.0 CS: IP Programmer’s Reference

OSF/Motif header files
The following is a list of headers for the OSF/Motif-based widget set:

ArrowB.h
ArrowBG.h
ArrowBGP.h
ArrowBP.h
bitmaps.h
BulletBP.h
Bulletin.h
CascaBGP.h
CascadBG.h
CascaBGP.h
CascadBP.h
CascadeB.h
Command.h
CommandP.h
CutPaste.h
CutPastP.h
DialogS.h
DialogSP.h
DrawingA.h
DrawinAP.h
DrawnB.h
DrawnBP.h
FileSB.h
FileSBP.h
Form.h

FormP.h
Frame.h
FrameP.h
Label.h
LabelG.h
LabelGP.h
LabelP.h
List.h
ListP.h
MainW.h
MainWP.h
MenuShel.h
MenuShep.h
MessagBP.h
MessageB.h
PanedW.h
PanedWP.h
PushB.h
PushBG.h
PushBGP.h
PushBP.h
RowColum.h
RowColuP.h

SashP.h
Scale.h
ScaleP.h
ScrollBa.h
ScrollBP.h
Scrolled.h
ScrollWP.h
SelectBP.h
SelectiB.h
SeparaGP.h
SeparatG.h
Separato.h
SeparatP.h
StringSr.h
Text.h
TextInP.h
TextOutP.h
TextP.h
TextSrcP.h
TogglBGP.h
ToggleB.h
ToggleBG.h
ToggleBP.h
Xm.h
XmP.h

Compiling and linking
You can use several methods to compile, link-edit, and execute your program in
MVS. This section contains information about the data sets that you must include to
run your C source program under MVS batch using cataloged procedures supplied
by IBM.

The following list contains partitioned data set names, which are used as examples
in the JCL statements below:

Data Set Name Contents

user_id.MYPROG.C Contains user C source programs.

user_id.MYPROG.C(PROGRAM1)
Member PROGRAM1 in user_id.MYPROG.C
partitioned data set.

user_id.MYPROG.H Contains user #include files.

user_id.MYPROG.OBJ Contains object code for the compiled versions of
user C programs in user_id.MYPROG.C.

user_id.MYPROG.LOAD Contains link-edited versions of user programs in
user_id.MYPROG.OBJ.

Nonreentrant modules
The following lines describe the additions that you must make to the compile step of
your cataloged procedure to compile a nonreentrant module. Catalogued
procedures are included in the samples supplied by IBM for your MVS system.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 339

Note: Compile all C source using the def(IBMCPP) preprocessor symbol.

v Add the following statement as the first //SYSLIB DD statement:

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:

//USERLIB DD DSN=user_id.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the link-edit step of
your cataloged procedure to link-edit a nonreentrant module:

v To link-edit programs that use only X11 library functions, add the following
statements as the first //SYSLIB DD statements:

// DD DSN=hlq.SEZAX11L,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

v You must include the following statements when you link-edit your application
code, because not all entry points are defined as external references in
hlq.SEZAX11L:

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)

v To link-edit programs that use the Athena Toolkit functions, including Athena
Widget sets, add the following after the //SYSLIB DD statement:

// DD DSN=hlq.SEZAXAWL,DISP=SHR
// DD DSN=hlq.SEZAXTLB,DISP=SHR
// DD DSN=hlq.SEZAX11L,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

v You must include the following when you link-edit your application code, because
not all entry points are defined as external references in hlq.SEZAX11L,
hlq.SEZAXTLB, and hlq.SEZAXAWL:

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ASCTEXT)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(ATEXT)

v To link-edit programs that use the OSF/Motif Toolkit functions, add the following
after the //SYSLIB DD statement:

// DD DSN=hlq.SEZAXMLB,DISP=SHR
// DD DSN=hlq.SEZAXTLB,DISP=SHR

340 z/OS V1R4.0 CS: IP Programmer’s Reference

// DD DSN=hlq.SEZAX11L,DISP=SHR
// DD DSN=hlq.SEZACMTX,DISP=SHR

v You must include the following when you link-edit your application code, because
not all entry points are defined as external references in hlq.SEZAX11L,
hlq.SEZAXTLB, and hlq.SEZAXMLB.

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(CUTPASTE)
INCLUDE SYSLIB(FILESB)
INCLUDE SYSLIB(GEOUTILS)
INCLUDE SYSLIB(LIST)
INCLUDE SYSLIB(MANAGER)
INCLUDE SYSLIB(PRIMITIV)
INCLUDE SYSLIB(RESIND)
INCLUDE SYSLIB(ROWCOLUM)
INCLUDE SYSLIB(MSELECTI)
INCLUDE SYSLIB(TEXT)
INCLUDE SYSLIB(TEXTF)
INCLUDE SYSLIB(TRAVERSA)
INCLUDE SYSLIB(VISUAL)
INCLUDE SYSLIB(XMSTRING)

Note: If you are using X Release 10 compatibility routines, add the following in
the //SYSLIB DD statement:

// DD DSN=hlq.SEZAOLDX,DISP=SHR

The following steps describe how to execute your program:

1. Specify the IP address of the X server on which you want to display the
application output by creating or modifying the user_id.XWINDOWS.DISPLAY
data set. The following is an example of a line in this data set.

CHARM.RALEIGH.IBM.COM:0.0 or 9.67.43.79:0.0

2. Allow the host application access to the X server.

3. On the workstation where you want to display the application output, you must
grant permission for the MVS host to access the X server. To do this, enter the
xhost command:

xhost ralmvs1

4. To execute your program under TSO, enter the following:

CALL ‘user_id.MYPROG.LOAD(PROGRAM1)’

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 341

Reentrant modules
The following lines describe the additions that you must make to the compile step of
your cataloged procedure to compile a reentrant module. Cataloged procedures are
included in the samples supplied by IBM for your MVS system.

Note: Compile all C source using the def(IBMCPP) preprocessor symbol. See
“Compiling and linking” on page 339 for information about compiling and
linking your program in MVS.

v Add the following statement as the first //SYSLIB DD statement:

//SYSLIB DD DSN=hlq.SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:

//USERLIB DD DSN=user_id.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the prelink-edit
and link-edit steps of your cataloged procedure to create a reentrant module.

v To create reentrant modules that use only the X11 library functions, do the
following:

– Add the following statement as the first //SYSLIB DD statement in the
prelink-edit step:

// DD DSN=hlq.SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the link-edit
step:

// DD DSN=hlq.SEZACMTX,DISP=SHR

v To create reentrant modules that use only the Athena Toolkit functions, including
Athena Widget sets, do the following:

– Add the following statements as the first //SYSLIB DD statements in the
prelink-edit step:

// DD DSN=hlq.SEZARNT2,DISP=SHR
// DD DSN=hlq.SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the link-edit
step:

// DD DSN=hlq.SEZACMTX,DISP=SHR

v To create reentrant modules that use only the OSF/Motif Toolkit functions, do the
following:

– Add the following statements as the first //SYSLIB DD statements in the
prelink-edit step:

// DD DSN=hlq.SEZARNT3,DISP=SHR
// DD DSN=hlq.SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the link-edit
step:

// DD DSN=hlq.SEZACMTX,DISP=SHR

Following is a sample cataloged procedure for an X11 library function.

342 z/OS V1R4.0 CS: IP Programmer’s Reference

//*---
//* PRELINK-EDIT STEP:
//*---
//PRELNK EXEC PGM=EDCPRLK,REGION=4096K,COND=(4,LT),
// PARM=’MAP,NONCAL’
//STEPLIB DD DSN=C370.LL.V2R1M0.SEDCLINK,DISP=SHR
// DD DSN=C370.LL.V2R1M0.COMMON.SIBMLINK,DISP=SHR
// DD DSN=C370.LL.V2R1M0.SEDCCOMP,DISP=SHR
//SYSLIB DD DSN=B37.SEZARNT1,DISP=SHR
//OBJLIB DD DSN=&OBJLIB;,DISP=SHR;
//SYSMOD DD UNIT=VIO,SPACE=(TRK,(50,10)),DISP=(MOD,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSMSGS DD DSN=C370.V2R1M0.SEDCMSGS(EDCMSGE),DISP=SHR
//SYSPRINT DD SYSOUT=&SYSOUT;
//SYSOUT DD SYSOUT=&SYSOUT;
//*
//*---
//* LINK-EDIT STEP:
//*---
//LKED EXEC PGM=IEWL,PARM=’&LPARM;’,COND=(4,LT)
//SYSLIB DD DSN=&VSCCHD;&CVER;&CBASE;,DISP=SHR;
// DD DSN=C370.LL.V2R1M0.COMMON.SIBMLINK,DISP=SHR
// DD DSN=&COMHD;&COMVER;&COMBASE;,DISP=SHR;
// DD DSN=C370.V2R1M0.SEDCSPC,DISP=SHR
// DD DSN=B37.SEZACMTX,DISP=SHR
//NEWOBJ DD DSN=*.PRELNK.SYSMOD,DISP=(OLD,DELETE)
//OBJLIB DD DSN=&OBJLIB;,DISP=SHR;
//SYSLMOD DD DSN=&XWDLOAD;,DISP=SHR;
//SYSPRINT DD SYSOUT=&SYSOUT;
//SYSUT1 DD DSN=&&SYSUT1;,UNIT=&WORKDA;,DISP=&LKDISP;,SPACE=&WRKSPC;
//*

Note: For more information about installing a reentrant module in the LPA area,
refer to the z/OS C/C++ User’s Guide.

The following steps describe how to execute your program:

1. Specify the IP address of the X server on which you want to display the
application output by creating or modifying the user_id.XWINDOWS.DISPLAY
data set. The following is an example of a line in this data set:

CHARM.RALEIGH.IBM.COM:0.0 or 9.67.43.79:0.0

2. Allow the host application access to the X server.

On the workstation where you want to display the application output, you must
grant permission for the MVS host to access the X server. To do this, enter the
xhost command:

xhost ralmvs1

3. If you have installed your program in the LPA as a reentrant module and you
want to run it under TSO, enter the following:

PROGRAM1

Note: For more information about compiling and linking, refer to the z/OS C/C++
User’s Guide.

Using sample X Window System programs
This section contains information about the sample X programs provided. The C
source code can be found in the hlq.SEZAINST data set.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 343

The following are sample C source programs:

Module Description
XSAMP1 Xlib sample program
XSAMP2 Athena Widget sample program
XSAMP3 OSF/Motif-based Widget sample program

Running a sample program
For information about running a sample program, see “Compiling and linking” on
page 339 and “Compiling and linking with z/OS UNIX System Services” on
page 386.

Standard X client applications
The following standard MIT X clients are also provided with TCP/IP as examples of
how to use the X Window System API:

Application Description

appres Lists application resource database

atobm Bit map conversion utilities

bitmap Bit map editor

bmtoa Bit map conversion utilities

listres Lists resources in widgets

oclock Displays time of day

xauth X authority data set utility

xcalc Scientific calculator for X

xclock Analog/digital clock for X

xdpyinfo Displays information utility for X

xfd Font displayer for X

xfontsel Point and click interface for selecting X11 font names

xkill Stops a client by its X resource

xlogo X Window System logo

xlsatoms Lists interned atoms defined on server

xlsclients Lists client applications running on a display

xlsfonts Displays server font list displayer for X

xlswins Displays server window list displayer for X

xmag Magnify parts of the screen

xprop Property displayer for X

xrdb X server resource database utility

xrefresh Refreshes all or part of an X screen

xset User preference utility for X

xsetroot Root window parameter setting utility for X

xwd Dumps an image of an X window

344 z/OS V1R4.0 CS: IP Programmer’s Reference

xwininfo Window information utility for X

xwud Displays image displayer for X

These standard X Window client application programs also contain information
about X Window System programming techniques.

Consult the following members of the hlq.SEZAINST data set for documentation
about the MIT X clients:

Member Name Description

HLPAPPRE Help for APPRES module

HLPBITMA Help for BITMAP module

HLPLISTR Help for LISTRES module

HLPOCLOC Help for OCLOCK module

HLPXAUTH Help for XAUTH module

HLPXCALC Help for XCALC module

HLPXCLOC Help for XCLOCK module

HLPXDPYI Help for XDPYINFO module

HLPXFD Help for XFD module

HLPXFONT Help for XFONTSEL module

HLPXKILL Help for XKILL module

HLPXLOGO Help for XLOGO module

HLPXLSAT Help for XLSATOMS module

HLPXLSCL Help for XLSCLIEN module

HLPXLSFO Help for XLSFONTS module

HLPXLSWI Help for XLSWINS module

HLPXMAG Help for XMAG module

HLPXPROP Help for XPROP module

HLPXRDB Help for XRDB module

HLPXREFR Help for XREFRESH module

HLPXSET Help for XSET module

HLPXSETR Help for XSETROOT module

HLPXWD Help for XWD module

HLPXWINI Help for XWININFO module

HLPXWUD Help for XWUD module

The hlq.SEZAINST data set also contains default application resource data sets for
XCALC, XCLOCK, XFD, and XFONTSEL. Copy these data sets from:

v hlq.SEZAINST(XXCALC)

v hlq.SEZAINST(XXCLOCK)

v hlq.SEZAINST(XXFD)

v hlq.SEZAINST(XXFONTSE)

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 345

to the following data sets for TSO users:

v user_id.XAPDF.XCALC

v user_id.XAPDF.XCLOCK

v user_id.XAPDF.XFD

v user_id.XAPDF.XFONTSEL

Notes:

1. The EZAGETIN job includes JCL to copy the sample members from
hlq.SEZAINST to user_id.XAPDF.classname, where classname is the
application specified class name. The high-level qualifier (hlq) should be tailored
to be the user ID using these data sets.

2. For information on default application resource data sets for z/OS UNIX System
Services users, see “z/OS UNIX System Services support” on page 384.

Building X client modules
The support for X Window System Version 11 Release 4 provides standard MIT X
clients. The C source and header files are found in hlq.SEZAINST and
hlq.SEZACMAC data sets respectively.

You can build the following X client modules based on X11 functions:

Table 5. Building X client modules based on X11 functions.

To build module Do the following

ATOBM 1. Compile the ATOBM C source program.

2. Link-edit the ATOBM object module.

BITMAP 1. Compile the BITMAP C source program.

2. Compile the BMDIALOG C source program.

3. Link-edit the BITMAP and BMDIALOG object modules.

BMTOA 1. Compile the BMTOA C source program.

2. Link-edit the BMTOA object module.

XAUTH 1. Compile the XAUTH C source program.

2. Compile the GTHOSTXA C source program.

3. Compile the PROCESS source program.

4. Compile the PARSEDPY C source program.

5. Link-edit the XAUTH, GTHOSTXA, PROCESS, and
PARSEDPY object modules.

XDPYINFO C 1. Compile the XDPYINFO C source program.

2. Link-edit the XDPYINFO object module.

XKILL 1. Compile the XKILL C source program.

2. Link-edit the XKILL object module.

XLSATOMS 1. Compile the XLSATOMS C source program.

2. Link-edit the XLSATOMS object module.

XLSCLIEN 1. Compile the XLSCLIEN C source program.

2. Link-edit the XLSCLIEN object module.

XLSFONTS 1. Compile the XLSFONTS C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XLSFONTS and DSIMPLE object modules.

346 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 5. Building X client modules based on X11 functions. (continued)

To build module Do the following

XLSWINS 1. Compile the XLSWINS C source program.

2. Link-edit the XLSWINS object module.

XMAG 1. Compile the XMAG C source program.

2. Link-edit the XMAG object module.

XPROP 1. Compile the XPROP C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XPROP and DSIMPLE object modules.

XRDB 1. Compile the XRDB C source program.

2. Link-edit the XRDB object module.

XREFRESH 1. Compile the XREFRESH C source program.

2. Link-edit the XREFRESH object module.

XSET 1. Compile the XSET C source program.

2. Link-edit the XSET object module.

XSETROOT 1. Compile the XSETROOT C source program.

2. Link-edit the XSETROOT object module.

XWD 1. Compile the XWD C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XWD and DSIMPLE object modules.

XWININFO 1. Compile the XWININFO C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XWININFO and DSIMPLE object modules.

XWUD 1. Compile the XWUD C source program.

2. Link-edit the XWUD object module.

You can build the following X client modules based on Xt Intrinsics and Athena
Toolkit functions:

Table 6. Building X client modules based on Xt Intrinsics and Athena Toolkit functions.

To build module Do the following

APPRES 1. Compile the APPRES C source program.

2. Link-edit the APPRES object module.

OCLOCK 1. Compile the OCLOCK C source program.

2. Compile the NCLOCK C source program.

3. Compile the TRANSFOR C source program.

4. Link-edit the OCLOCK, NCLOCK, and TRANSFOR object
modules.

LISTRES 1. Compile the LISTRES C source program.

2. Compile the UTIL C source program.

3. Compile the WIDGETS C source program.

4. Link-edit the LISTRES, UTIL, and WIDGETS object
modules.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 347

Table 6. Building X client modules based on Xt Intrinsics and Athena Toolkit
functions. (continued)

To build module Do the following

XCALC 1. Compile the XCALC C source program.

2. Compile the ACTIONS C source program.

3. Compile the MATH C source program.

4. Link-edit the XCALC, ACTIONS, and MATH object
modules.

XCLOCK 1. Compile the XCLOCK C source program.

2. Link-edit the XCLOCK object module.

XFD 1. Compile the XFD C source program.

2. Compile the FONTGRID C source program.

3. Link-edit the XFD and FONTGRID object modules.

XFONTSEL 1. Compile the XFONTSEL C source program.

2. Link-edit the XFONTSEL object module.

XLOGO 1. Compile the XLOGO C source program.

2. Link-edit the XLOGO object module.

X Window System routines
The following tables list the routines supported by TCP/IP. The routines are grouped
according to the type of function provided.

Opening and closing a display
Table 7 provides the routines for opening and closing a display.

Table 7. Opening and closing display

Routine Description

XCloseDisplay() Closes a display.

XFree() Frees in-memory data created by Xlib function.

XNoOp() Executes a NoOperation protocol request.

XOpenDisplay() Opens a display.

Creating and destroying windows
Table 8 provides the routines for creating and destroying windows.

Table 8. Creating and destroying windows

Routine Description

XConfigureWindow() Configures the specified window.

XCreateSimpleWindow() Creates unmapped InputOutput subwindow.

XCreateWindow() Creates unmapped subwindow.

XDestroySubwindows() Destroys all subwindows of specified window.

XDestroyWindow() Unmaps and destroys window and all subwindows.

348 z/OS V1R4.0 CS: IP Programmer’s Reference

Manipulating windows
Table 9 provides the routines for manipulating windows.

Table 9. Manipulating windows

Routine Description

XCirculateSubwindows() Circulates a subwindow up or down.

XCirculateSubwindowsUp() Raises the lowest mapped child of window.

XCirculateSubwindowsDown() Lowers the highest mapped child of window.

XIconifyWindow() Sends a WM_CHANGE_STATE ClientMessage to the root
window of the specified screen.

XLowerWindow() Lowers the specified window.

XMapRaised() Maps and raises the specified window.

XMapSubwindows() Maps all subwindows of the specified window.

XMapWindow() Maps the specified window.

XMoveResizeWindow() Changes the specified window size and location.

XMoveWindow() Moves the specified window.

XRaiseWindow() Raises the specified window.

XReconfigureWMWindow() Issues a ConfigureWindow request on the specified
top-level window.

XResizeWindow() Changes the specified window’s size.

XRestackWindows() Restacks a set of windows from top to bottom.

XSetWindowBorderWidth() Changes the border width of the window.

XUnmapSubwindows() Unmaps all subwindows of the specified window.

XUnmapWindow() Unmaps the specified window.

XWithdrawWindow() Unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified
screen.

Changing window attributes
Table 10 provides the routines for changing window attributes.

Table 10. Changing window attributes

Routine Description

XChangeWindowAttributes() Changes one or more window attributes.

XSetWindowBackground() Sets the window background to a specified pixel.

XSetWindowBackgroundPixmap() Sets the window background to a specified pixmap.

XSetWindowBorder() Changes the window border to a specified pixel.

XSetWindowBorderPixmap() Changes the window border tile.

XTranslateCoordinates() Transforms coordinates between windows.

Obtaining window information
Table 11 on page 350 provides the routines for obtaining window information.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 349

Table 11. Obtaining window information

Routine Description

XGetGeometry() Gets the current geometry of the specified drawable.

XGetWindowAttributes() Gets the current attributes for the specified window.

XQueryPointer() Gets the pointer coordinates and the root window.

XQueryTree() Obtains the IDs of the children and parent windows.

Obtaining properties and atoms
Table 12 provides the routines for obtaining properties and atoms.

Table 12. Properties and atoms

Routine Description

XGetAtomName() Gets a name for the specified atom ID.

XInternAtom() Gets an atom for the specified name.

Manipulating window properties
Table 13 provides the routines for manipulating the properties of windows.

Table 13. Manipulating window properties

Routine Description

XChangeProperty() Changes the property for the specified window.

XDeleteProperty() Deletes a property for the specified window.

XGetWindowProperty() Gets the atom type and property format for the window.

XListProperties() Gets the specified window property list.

XRotateWindowProperties() Rotates the properties in a property array.

Setting window selections
Table 14 provides the routines for setting window selections.

Table 14. Setting window selections

Routine Description

XConvertSelection() Converts a selection.

XGetSelectionOwner() Gets the selection owner.

XSetSelectionOwner() Sets the selection owner.

Manipulating colormaps
Table 15 provides the routines for manipulating color maps.

Table 15. Manipulating colormaps

Routine Description

XAllocStandardColormap() Allocates an XStandardColormap structure.

XCopyColormapAndFree() Creates a new colormap from a specified colormap.

XCreateColormap() Creates a colormap.

XFreeColormap() Frees the specified colormap.

350 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 15. Manipulating colormaps (continued)

Routine Description

XQueryColor() Queries the RGB value for a specified pixel.

XQueryColors() Queries the RGB values for an array of pixels.

XSetWindowColormap() Sets the colormap of the specified window.

Manipulating color cells
Table 16 provides the routines for manipulating color cells.

Table 16. Manipulating color cells

Routine Description

XAllocColor() Allocates a read-only color cell.

XAllocColorCells() Allocates read/write color cells.

XAllocColorPlanes() Allocates read/write color resources.

XAllocNamedColor() Allocates a read-only color cell by name.

XFreeColors() Frees colormap cells.

XLookupColor() Looks up a colorname.

XStoreColor() Stores an RGB value into a single colormap cell.

XStoreColors() Stores RGB values into colormap cells.

XStoreNamedColor() Sets a pixel color to the named color.

Creating and freeing pixmaps
Table 17 provides the routines for creating and freeing pixmaps.

Table 17. Creating and freeing pixmaps

Routine Description

XCreatePixmap() Creates a pixmap of a specified size.

XFreePixmap() Frees all storage associated with specified pixmap.

Manipulating graphics contexts
Table 18 provides the routines for manipulating graphics contexts.

Table 18. Manipulating graphics contexts

Routine Description

XChangeGC() Changes the components in the specified Graphics
Context (GC).

XCopyGC() Copies the components from a source GC to a destination
GC.

XCreateGC() Creates a new GC.

XFreeGC() Frees the specified GC.

XGetGCValues() Returns the GC values in the specified structure.

XGContextFromGC() Obtains the GContext resource ID for GC.

XQueryBestTile() Gets the best fill tile shape.

XQueryBestSize() Gets the best size tile, stipple, or cursor.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 351

Table 18. Manipulating graphics contexts (continued)

Routine Description

XQueryBestStipple() Gets the best stipple shape.

XSetArcMode() Sets the arc mode of the specified GC.

XSetBackground() Sets the background of the specified GC.

XSetClipmask() Sets the clip_mask of the specified GC to a specified
pixmap.

XSetClipOrigin() Sets the clip origin of the specified GC.

XSetClipRectangles() Sets the clip_mask of GC to a list of rectangles.

XSetDashes() Sets the dashed line style components of a specified GC.

XSetFillRule() Sets the fill rule of the specified GC.

XSetFillStyle() Sets the fill style of the specified GC.

XSetFont() Sets the current font of the specified GC.

XSetForeground() Sets the foreground of the specified GC.

XSetFunction() Sets display function in the specified GC.

XSetGraphicsExposures() Sets the graphics exposure flag of the specified GC.

XSetLineAttributes() Sets the line drawing components of the GC.

XSetPlaneMask() Sets the plane mask of the specified GC.

XSetState() Sets the foreground, background, plane mask, and
function in GC.

XSetStipple() Sets the stipple of the specified GC.

XSetSubwindowMode() Sets the subwindow mode of the specified GC.

XSetTile() Sets the fill tile of the specified GC.

XSetTSOrigin() Sets the tile or stipple origin of the specified GC.

Clearing and copying areas
Table 19 provides the routines for clearing and copying areas.

Table 19. Clearing and copying areas

Routine Description

XClearArea() Clears a rectangular area of the window.

XClearWindow() Clears the entire window.

XCopyArea() Copies the drawable area between drawables of the same
root and the same depth.

XCopyPlane() Copies single bit plane of the drawable.

Drawing lines
Table 20 provides the routines for drawing lines.

Table 20. Drawing lines

Routine Description

XDraw() Draws an arbitrary polygon or curve that is defined by the
specified list of Vertexes as specified in vlist.

XDrawArc() Draws a single arc in the drawable.

352 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 20. Drawing lines (continued)

Routine Description

XDrawArcs() Draws multiple arcs in a specified drawable.

XDrawFilled() Draws arbitrary polygons or curves and then fills them.

XDrawLine() Draws a single line between two points in a drawable.

XDrawLines() Draws multiple lines in the specified drawable.

XDrawPoint() Draws a single point in the specified drawable.

XDrawPoints() Draws multiple points in the specified drawable.

XDrawRectangle() Draws an outline of a single rectangle in the drawable.

XDrawRectangles() Draws an outline of multiple rectangles in the drawable.

XDrawSegments() Draws multiple line segments in the specified drawable.

Filling areas
Table 21 provides the routines for filling areas.

Table 21. Filling areas

Routine Description

XFillArc() Fills single arc in drawable.

XFillArcs() Fills multiple arcs in drawable.

XFillPolygon() Fills a polygon area in the drawable.

XFillRectangle() Fills single rectangular area in the drawable.

XFillRectangles() Fills multiple rectangular areas in the drawable.

Loading and freeing fonts
Table 22 provides the routines for loading and freeing fonts.

Table 22. Loading and freeing fonts

Routine Description

XFreeFont() Unloads the font and frees the storage used by the font.

XFreeFontInfo() Frees the font information array.

XFreeFontNames() Frees a font name array.

XFreeFontPath() Frees data returned by XGetFontPath.

XGetFontPath() Gets the current font search path.

XGetFontProperty() Gets the specified font property.

XListFontsWithInfo() Gets names and information about loaded fonts.

XLoadFont() Loads a font.

XLoadQueryFont() Loads and queries font in one operation.

XListFonts() Gets a list of available font names.

XQueryFont() Gets information about a loaded font.

XSetFontPath() Sets the font search path.

XUnloadFont() Unloads the specified font.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 353

Querying character string sizes
Table 23 provides the routines for querying the character size of a string.

Table 23. Querying character string sizes

Routine Description

XFreeStringList() Frees the in-memory data associated with the specified
string list.

XQueryTextExtents() Gets a 1-byte character string bounding box from the
server.

XQueryTextExtents16() Gets a 2-byte character string bounding box from the
server.

XStringListToTextProperty() Converts lists of pointers to character strings and text
properties.

XTextExtents() Gets a bounding box of a 1-byte character string.

XTextExtents16() Gets a bounding box of a 2-byte character string.

XTextPropertyToStringList() Returns a list of strings representing the elements of the
specified XTextProperty structure.

XTextWidth() Gets the width of an 8-bit character string.

XTextWidth16() Gets the width of a 2-byte character string.

Drawing text
Table 24 provides the routines for drawing text.

Table 24. Drawing text

Routine Description

XDrawImageString() Draws 8-bit image text in the specified drawable.

XDrawImageString16() Draws 2-byte image text in the specified drawable.

XDrawString() Draws 8-bit text in the specified drawable.

XDrawString16() Draws 2-byte text in the specified drawable.

XDrawText() Draws 8-bit complex text in the specified drawable.

XDrawText16() Draws 2-byte complex text in the specified drawable.

Transferring images
Table 25 provides the routines for transferring images.

Table 25. Transferring images

Routine Description

XGetImage() Gets the image from the rectangle in the drawable.

XGetSubImage() Copies the rectangle on the display to the image.

XPutImage() Puts the image from memory into the rectangle in the
drawable.

Manipulating cursors
Table 26 on page 355 provides the routines for manipulating cursors.

354 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 26. Manipulating cursors

Routine Description

XCreateFontCursor() Creates a cursor from a standard font.

XCreateGlyphCursor() Creates a cursor from font glyphs.

XDefineCursor() Defines a cursor for a window.

XFreeCursor() Frees a cursor.

XQueryBestCursor() Gets useful cursor sizes.

XRecolorCursor() Changes the color of a cursor.

XUndefineCursor() Undefines a cursor for a window.

Handling window manager functions
Table 27 provides the routines for handling the window manager functions.

Table 27. Handling window manager functions

Routine Description

XAddToSaveSet() Adds a window to the client saveset.

XAllowEvents() Allows events to be processed after a device is frozen.

XChangeActivePointerGrab() Changes the active pointer grab.

XChangePointerControl() Changes the interactive feel of the pointer device.

XChangeSaveSet() Adds or removes a window from the client’s saveset.

XGetInputFocus() Gets the current input focus.

XGetPointerControl() Gets the current pointer parameters.

XGrabButton() Grabs a mouse button.

XGrabKey() Grabs a single key of the keyboard.

XGrabKeyboard() Grabs the keyboard.

XGrabPointer() Grabs the pointer.

XGrabServer() Grabs the server.

XInstallColormap() Installs a colormap.

XKillClient() Removes a client.

XListInstalledColormaps() Gets a list of currently installed colormaps.

XRemoveFromSaveSet() Removes a window from the client’s saveset.

XReparentWindow() Changes the parent of a window.

XSetCloseDownMode() Changes the close down mode.

XSetInputFocus() Sets the input focus.

XUngrabButton() Ungrabs a mouse button.

XUngrabKey() Ungrabs a key.

XUngrabKeyboard() Ungrabs the keyboard.

XUngrabPointer() Ungrabs the pointer.

XUngrabServer() Ungrabs the server.

XUninstallColormap() Uninstalls a colormap.

XWarpPointer() Moves the pointer to an arbitrary point on the screen.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 355

Manipulating keyboard settings
Table 28 provides the routines for manipulating keyboard settings.

Table 28. Manipulating keyboard settings

Routine Description

XAutoRepeatOff() Turns off the keyboard auto-repeat.

XAutoRepeatOn() Turns on the keyboard auto-repeat.

XBell() Sets the volume of the bell.

XChangeKeyboardControl() Changes the keyboard settings.

XChangeKeyboardMapping() Changes the mapping of symbols to keycodes.

XDeleteModifiermapEntry() Deletes an entry from the XModifierKeymap structure.

XFreeModifiermap() Frees XModifierKeymap structure.

XGetKeyboardControl() Gets the current keyboard settings.

XGetKeyboardMapping() Gets the mapping of symbols to keycodes.

XGetModiferMapping() Gets keycodes to be modifiers.

XGetPointerMapping() Gets the mapping of buttons on the pointer.

XInsertModifiermapEntry() Adds an entry to the XModifierKeymap structure.

XNewModifiermap() Creates the XModifierKeymap structure.

XQueryKeymap() Gets the state of the keyboard keys.

XSetPointerMapping() Sets the mapping of buttons on the pointer.

XSetModifierMapping() Sets keycodes to be modifiers.

Controlling the screen saver
Table 29 provides the routines for controlling the screen saver.

Table 29. Controlling the screen saver

Routine Description

XActivateScreenSaver() Activates the screen saver.

XForceScreenSaver() Turns the screen saver on or off.

XGetScreenSaver() Gets the current screen saver settings.

XResetScreenSaver() Resets the screen saver.

XSetScreenSaver() Sets the screen saver.

Manipulating hosts and access control
Table 30 provides the routines for manipulating hosts and toggling the access
control.

Table 30. Manipulating hosts and access control

Routine Description

XDisableAccessControl() Disables access control.

XEnableAccessControl() Enables access control.

XListHosts() Gets the list of hosts.

XSetAccessControl() Changes access control.

356 z/OS V1R4.0 CS: IP Programmer’s Reference

Handling events
Table 31 provides the routines for handling events.

Table 31. Handling events

Routine Description

XCheckIfEvent() Checks event queue for the specified event without
blocking.

XCheckMaskEvent() Removes the next event that matches a specified mask
without blocking.

XCheckTypedEvent() Gets the next event that matches event type.

XCheckTypedWindowEvent() Gets the next event for the specified window.

XCheckWindowEvent() Removes the next event that matches the specified
window and mask without blocking.

XEventsQueued() Checks the number of events in the event queue.

XFlush() Flushes the output buffer.

XGetMotionEvents() Gets the motion history for the specified window.

XIfEvent() Checks the event queue for the specified event and
removes it.

XMaskEvent() Removes the next event that matches a specified mask.

XNextEvent() Gets the next event and removes it from the queue.

XPeekEvent() Peeks at the event queue.

XPeekIfEvent() Checks the event queue for the specified event.

XPending() Returns the number of events that are pending.

XPutBackEvent() Pushes the event back to the top of the event queue.

XSelectInput() Selects events to be reported to the client.

XSendEvent() Sends an event to a specified window.

XSync() Flushes the output buffer and waits until all requests are
completed.

XWindowEvent() Removes the next event that matches the specified
window and mask.

Enabling and disabling synchronization
Table 32 provides the routines for toggling synchronization.

Table 32. Enabling and disabling synchronization

Routine Description

XSetAfterFunction() Sets the previous after function.

XSynchronize() Enables or disables synchronization.

Using default error handling
Table 33 provides the routines for using the default error handling.

Table 33. Using default error handling

Routine Description

XDisplayName() Gets the name of the display currently being used.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 357

Table 33. Using default error handling (continued)

Routine Description

XGetErrorText() Gets the error text for the specified error code.

XGetErrorDatabaseText() Gets the error text from the error database.

XSetErrorHandler() Sets the error handler.

XSetIOErrorHandler() Sets the error handler for unrecoverable I/O errors.

Communicating with window managers
Table 34 provides the routines for communicating with window managers.

Table 34. Communicating with window managers

Routine Description

XAllocClassHints() Allocates storage for an XClassHint structure.

XAllocIconSize() Allocates storage for an XIconSize structure.

XAllocSizeHints() Allocates storage for an XSizeHints structure.

XAllocWMHints() Allocates storage for an XWMHints structure.

XGetClassHint() Gets the class of a window.

XFetchName() Gets the name of a window.

XGetCommand() Gets a window WM_COMMAND property.

XGetIconName() Gets the name of an icon window.

XGetIconSizes() Gets the values of icon size atom.

XGetNormalHints() Gets size hints for window in normal state.

XGetRGBColormaps() Gets colormap associated with specified atom.

XGetSizeHints() Gets the values of type WM_SIZE_HINTS properties.

XGetStandardColormap() Gets colormap associated with specified atom.

XGetTextProperty() Gets window property of type TEXT.

XGetTransientForHint() Gets WM_TRANSIENT_FOR property for window.

XGetWM_CLIENT_MACHINE Gets the value of a window WM_CLIENT_MACHINE
property.

XGetWMColormapWindows) Gets the value of a window WM_COLORMAP_WINDOWS
property.

XGetWMHints() Gets the value of the window manager hints atom.

XGetWMName() Gets the value of the WM_NAME property.

XGetWMIconName() Gets the value of the WM_ICON_NAME property.

XGetWMNormalHints() Gets the value of the window manager hints atom.

XGetWMProtocols() Gets the value of a window WM_ PROTOCOLS property.

XGetWMSizeHints() Gets the values of type WM_SIZE_HINTS properties.

XGetZoomHints() Gets values of the zoom hints atom.

XSetCommand() Sets the value of the command atom.

XSetClassHint() Sets the class of a window.

XSetIconName() Assigns a name to an icon window.

XSetIconSizes() Sets the values of icon size atom.

XSetNormalHints() Sets size hints for a window in normal state.

358 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 34. Communicating with window managers (continued)

Routine Description

XSetRGBColormaps() Sets the colormap associated with the specified atom.

XSetSizeHints() Sets the values of the type WM_SIZE_HINTS properties.

XSetStandardColormap() Sets the colormap associated with the specified atom.

XSetStandardProperties() Specifies a minimum set of properties.

XSetTextProperty() Sets window properties of type TEXT.

XSetTransientForHint() Sets WM_TRANSIENT_FOR property for window.

XSetWMClientMachine() Sets window WM_CLIENT_MACHINE property.

XSetWMColormapWindows() Sets a window WM_COLORMAP_WINDOWS property.

XSetWMHints() Sets the value of the window manager hints atom.

XSetWMIconName() Sets the value of the WM_ICON_NAME property.

XSetWMName() Sets the value of the WM_NAME property.

XSetWMNormalHints() Sets the value of the window manager hints atom.

XSetWMProperties() Sets the values of properties for a window manager.

XSetWMProtocols() Sets the value of the WM_PROTOCOLS property.

XSetWMSizeHints() Sets the values of type WM_SIZE_HINTS properties.

XSetZoomHints() Sets the values of the zoom hints atom.

XStoreName() Assigns a name to a window.

Manipulating keyboard event functions
Table 35 provides the routines for manipulating keyboard event functions.

Table 35. Manipulating keyboard event functions

Routine Description

XKeycodeToKeysym() Converts keycode to a keysym value.

XKeysymToKeycode() Converts keysym value to keycode.

XKeysymToString() Converts keysym value to keysym name.

XLookupKeysym() Translates a keyboard event into a keysym value.

XLookupMapping() Gets the mapping of a keyboard event from a keymap file.

XLookupString() Translates the keyboard event into a character string.

XRebindCode() Changes the keyboard mapping in the keymap file.

XRebindKeysym() Maps the character string to a specified keysym and
modifiers.

XRefreshKeyboardMapping() Refreshes the stored modifier and keymap information.

XStringToKeysym() Converts the keysym name to the keysym value.

XUseKeymap() Changes the keymap files.

XGeometry() Parses window geometry given padding and font values.

XGetDefault() Gets the default window options.

XParseColor() Obtains RGB values from color name.

XParseGeometry() Parses standard window geometry options.

XWMGeometry() Obtains a window’s geometry information.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 359

Manipulating regions
Table 36 provides the routines for manipulating regions.

Table 36. Manipulating regions

Routine Description

XClipBox() Generates the smallest enclosing rectangle in the region.

XCreateRegion() Creates a new empty region.

XEmptyRegion() Determines whether a specified region is empty.

XEqualRegion() Determines whether two regions are the same.

XIntersectRegion() Computes the intersection of two regions.

XDestroyRegion() Frees storage associated with the specified region.

XOffsetRegion() Moves the specified region by the specified amount.

XPointInRegion() Determines if a point lies in the specified region.

XPolygonRegion() Generates a region from points.

XRectInRegion() Determines if a rectangle lies in the specified region.

XSetRegion() Sets the GC to the specified region.

XShrinkRegion() Reduces the specified region by a specified amount.

XSubtractRegion() Subtracts two regions.

XUnionRegion() Computes the union of two regions.

XUnionRectWithRegion() Creates a union of source region and rectangle.

XXorRegion() Gets the difference between the union and intersection of
regions.

Using cut and paste buffers
Table 37 provides the routines for using cut and paste buffers.

Table 37. Using cut and paste buffers

Routine Description

XFetchBuffer() Gets data from a specified cut buffer.

XFetchBytes() Gets data from the first cut buffer.

XRotateBuffers() Rotates the cut buffers.

XStoreBuffer() Stores data in a specified cut buffer.

XStoreBytes() Stores data in first cut buffer.

Querying visual types
Table 38 provides the routines for querying visual types.

Table 38. Querying visual types

Routine Description

XGetVisualInfo() Gets a list of visual information structures.

XListDepths() Determines the number of depths that are available on a
given screen.

XListPixmapFormats() Gets the pixmap format information for a given display.

XMatchVisualInfo() Gets visual information matching screen depth and class.

360 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 38. Querying visual types (continued)

Routine Description

XPixmapFormatValues() Gets the pixmap format information for a given display.

Manipulating images
Table 39 provides the routines for manipulating images.

Table 39. Manipulating images

Routine Description

XAddPixel() Increases each pixel in pixmap by a constant value.

XCreateImage() Allocates memory for the XImage structure.

XDestroyImage() Frees memory for the XImage structure.

XGetPixel() Gets a pixel value in an image.

XPutPixel() Sets a pixel value in an image.

XSubImage() Creates an image that is a subsection of a specified
image.

Manipulating bit maps
Table 40 provides the routines for manipulating bit maps.

Table 40. Manipulating bit maps

Routine Description

XCreateBitmapFromData() Includes a bit map in the C program.

XCreatePixmapFromBitmapData() Creates a pixmap using bit map data.

XDeleteContext() Deletes data associated with the window and context
type.

XFindContext() Gets data associated with the window and context type.

XReadBitmapFile() Reads in a bit map from a file.

XSaveContext() Stores data associated with the window and context type.

XUniqueContext() Allocates a new context.

XWriteBitmapFile() Writes out a bit map to a file.

Using the resource manager
Table 41 provides the routines for using the resource manager.

Table 41. Using the resource manager

Routine Description

Xpermalloc() Allocates memory that is never freed.

XrmDestroyDatabase() Destroys a resource database and frees its allocated
memory.

XrmGetFileDatabase() Creates a database from a specified file.

XrmGetResource() Retrieves a resource from a database.

XrmGetStringDatabase() Creates a database from a specified string.

XrmInitialize() Initializes the resource manager.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 361

Table 41. Using the resource manager (continued)

Routine Description

XrmMergeDatabases() Merges two databases.

XrmParseCommand() Stores command options in a database.

XrmPutFileDatabase() Copies the database into a specified file.

XrmPutLineResource() Stores a single resource entry in a database.

XrmPutResource() Stores a resource in a database.

XrmPutStringResource() Stores string resource in a database.

XrmQGetResource() Retrieves a quark from a database.

XrmQGetSearchList() Gets a resource search list of database levels.

XrmQGetSearchResource() Gets a quark search list of database levels.

XrmQPutResource() Stores binding and quarks in a database.

XrmQPutStringResource() Stores string binding and quarks in a database.

XrmQuarkToString() Converts a quark to a character string.

XrmStringToQuark() Converts a character string to a quark.

XrmStringToQuarkList() Converts character strings to a quark list.

XrmStringToBindingQuarkList() Converts strings to bindings and quarks.

XrmUniqueQuark() Allocates a new quark.

Manipulating display functions
Table 42 provides the routines for manipulating display functions.

Table 42. Manipulating display functions

Routine Description

AllPlanes() XAllPlanes() Returns all bits suitable for use in plane argument.

BitMapBitOrder() XBitMapOrder() Returns either the most or least significant bit in each bit
map unit.

BitMapPad() XBitMapPad() Returns the multiple of bits padding each scanline.

BitMapUnit() XBitMapUnit() Returns the size of a bit map unit in bits.

BlackPixel() XBlackPixel() Returns the black pixel value of the screen specified.

BlackPixelOfScreen() XBlackPixelOfScreen() Returns the black pixel value of the screen specified.

CellsOfScreen() XCellsOfScreen() Returns the number of colormap cells.

ConnectionNumber() XConnectionNumber() Returns the file descriptor of the connection.

CreatePixmapCursor() XCreatePixmapCursor() Creates a pixmap of a specified size.

CreateWindow() XCreateWindow() Creates an unmapped subwindow for a specified parent
window.

DefaultColormap() XDefaultColormap() Returns a default colormap ID for allocation on the screen
specified.

DefaultColormapOfScreen() XDefaultColormapOfScreen Returns the default colormap ID of the screen specified.

DefaultDepth() XDefaultDepth() Returns the depth of the default root window.

DefaultDepthOfScreen() XDefaultDepthOfScreen() Returns the default depth of the screen specified.

DefaultGC() XDefaultGC() Returns the default GC of the default root window.

DefaultGCOfScreen() XDefaultGCOfScreen() Returns the default GC of the screen specified.

362 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 42. Manipulating display functions (continued)

Routine Description

DefaultScreen() XDefaultScreen() Obtains the default screen referred to in the
XOpenDisplay routine.

DefaultScreenofDisplay() XDefaultScreenofDisplay() Returns the default screen of the display specified.

DefaultRootWindow() XDefaultRootWindow() Obtains the root window for the default screen specified.

DefaultVisual() XDefaultVisual() Returns the default visual type of the screen specified.

DefaultVisualOfScreen() XDefaultVisualOfScreen() Returns the default visual type of the screen specified.

DisplayCells() XDisplayCells() Displays the number of entries in the default colormap.

DisplayHeight() XDisplayHeight() Displays the height of the screen in pixels.

DisplayHeightMM() XDisplayHeightMM() Displays the height of the screen in millimeters.

DisplayOfScreen() XDisplayOfScreen() Displays the type of screen specified.

DisplayPlanes() XDisplayPlanes() Displays the depth (number of planes) of the root window
of the screen specified.

DisplayString() XDisplayString() Displays the string passed to XOpenDisplay when the
current display was opened.

DisplayWidth() XDisplayWidth() Displays the width of the specified screen in pixels.

DisplayWidthMM() XDisplayWidthMM() Displays the width of the specified screen in millimeters.

DoesBackingStore() XDoesBackingStore() Indicates whether the specified screen supports backing
stores.

DoesSaveUnders() XDoesSaveUnders() Indicates whether the specified screen supports save
unders.

EventMaskOfScreen() XEventMaskOfScreen() Returns the initial root event mask for a specified screen.

HeightMMOfScreen() XHeightMMOfScreen() Returns the height of a specified screen in millimeters.

HeightOfScreen() XHeightOfScreen() Returns the height of a specified screen in pixels.

ImageByteOrder() XImageByteOrder() Specifies the required byte order for each scanline unit of
an image.

IsCursorKey() Returns TRUE if keysym is on cursor key.

IsFunctionKey() Returns TRUE if keysym is on function keys.

IsKeypadKey() Returns TRUE if keysym is on keypad.

IsMiscFunctionKey() Returns TRUE if keysym is on miscellaneous function keys.

IsModifierKey() Returns TRUE if keysym is on modifier keys.

IsPFKey() Returns TRUE if keysym is on PF keys.

LastKnownRequestProcessed()
XLastKnownRequestProcessed()

Extracts the full serial number of the last known request
processed by the X server.

MaxCmapsOfScreen() XMaxCmapsOfScreen() Returns the maximum number of colormaps supported by
the specified screen.

MinCmapsOfScreen() XMinCmapsOfScreen() Returns the minimum number of colormaps supported by
the specified screen.

NextRequest() XNextRequest() Extracts the full serial number to be used for the next
request to be processed by the X Server.

PlanesOfScreen() XPlanesOfScreen() Returns the depth (number of planes) in a specified
screen.

ProtocolRevision() XProtocolRevision() Returns the minor protocol revision number (0) of the X
server associated with the display.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 363

Table 42. Manipulating display functions (continued)

Routine Description

ProtocolVersion() XProtocolVersion() Returns the major version number (11) of the protocol
associated with the display.

QLength() XQLength() Returns the length of the event queue for the display.

RootWindow() XRootWindow() Returns the root window of the current screen.

RootWindowOfScreen() XRootWindowOfScreen() Returns the root window of the specified screen.

ScreenCount() XScreenCount() Returns the number of screens available.

XScreenNumberOfScreen() Returns the screen index number of the specified screen.

ScreenOfDisplay() XScreenOfDisplay() Returns the pointer to the screen of the display specified.

ServerVendor() XServerVendor() Returns the pointer to a null-determined string that
identifies the owner of the X server implementation.

VendorRelease() XVendorRelease() Returns the number related to the vendor’s release of the
X server.

WhitePixel() XWhitePixel() Returns the white pixel value for the current screen.

WhitePixelOfScreen() XWhitePixelOfScreen() Returns the white pixel value of the specified screen.

WidthMMOfScreen() XWidthMMOfScreen() Returns the width of the specified screen in millimeters.

WidthOfScreen() XWidthOfScreen() Returns the width of the specified screen in pixels.

Extension routines
X Window System Extension Routines allow you to create extensions to the core
Xlib functions with the same performance characteristics. The following are the
protocol requests for X Window System extensions:

v XQueryExtension

v XListExtensions

v XFreeExtensionList

Table 43 lists the X Window System Extension Routines and provides a short
description of each routine.

Table 43. Extension routines

Routine Description

XAllocID() Returns a resource ID that can be used when creating
new resources.

XESetCloseDisplay() Defines a procedure to call when XCloseDisplay is called.

XESetCopyGC() Defines a procedure to call when a GC is copied.

XESetCreateFont() Defines a procedure to call when XLoadQueryFont is
called.

XESetCreateGC() Defines a procedure to call when a new GC is created.

XESetError() Suppresses the call to an external error handling routine
and defines an alternative routine for error handling.

XESetErrorString() Defines a procedure to call when an I/O error is detected.

XESetEventToWire() Defines a procedure to call when an event must be
converted from the host to wire format.

XESetFreeFont() Defines a procedure to call when XFreeFont is called.

364 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 43. Extension routines (continued)

Routine Description

XESetFreeGC() Defines a procedure to call when a GC is freed.

XESetWireToEvent() Defines a procedure to call when an event is converted
from the wire to the host format.

XFreeExtensionList() Frees memory allocated by XListExtensions.

XListExtensions() Returns a list of all extensions supported by the server.

XQueryExtension() Indicates whether a named extension is present.

MIT extensions to X
The AIX extensions described in the IBM AIX X-Windows Programmer’s Reference
are not supported by the X Window System API provided by the TCP/IP library
routines.

The following MIT extensions are supported by the TCP/IP X client code:

v SHAPE

v MITMISC

v MULTIBUF

Table 44 lists the routines that allow an application to use these extensions.

Table 44. MIT extensions to X

Routine Description

XShapeQueryExtension Queries to see if server supports the SHAPE extension.

XShapeQueryVersion Checks the version number of the server SHAPE
extension.

XShapeCombineRegion Converts the specified region into a list of rectangles and
calls XShapeRectangles.

XShapeCombineRectangles Performs a CombineRectangles operation.

XShapeCombineMask Performs a CombineMask operation.

XShapeCombineShape Performs a CombineShape operation.

XShapeOffsetShape Performs an OffsetShape operation.

XShapeQueryExtents Sets the extents of the bounding and clip shapes.

XShapeSelectInput Selects Input Events.

XShapeInputSelected Returns the current input mask for extension events on
the specified window.

XShapeGetRectangles Gets a list of rectangles describing the region specified.

XMITMiscQueryExtension Queries to see if server supports the MITMISC extension.

XMITMiscSetBugMode Sets the compatibility mode switch.

XMITMiscGetBugMode Queries the compatibility mode switch.

XmbufQueryExtension Queries to see if server supports the MULTIBUF
extension.

XmbufGetVersion Gets the version number of the extension.

XmbufCreateBuffers Requests that multiple buffers be created.

XmbufDestroyBuffers Requests that the buffers be destroyed.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 365

Table 44. MIT extensions to X (continued)

Routine Description

XmbufDisplayBuffers Displays the indicated buffers.

XmbufGetWindowAttributes Gets the multibuffering attributes.

XmbufChangeWindowAttributes Sets the multibuffering attributes.

XmbufGetBufferAttributes Gets the attributes for the indicated buffer.

XmbufChangeBufferAttributes Sets the attributes for the indicated buffer.

XmbufGetScreenInfo Gets the parameters controlling how mono and stereo
windows may be created on the indicated screen.

XmbufCreateStereoWindow Creates a stereo window.

Associate table functions
When you need to associate arbitrary information with resource IDs, the
XAssocTable allows you to associate your own data structures with X resources,
such as bit maps, pixmaps, fonts, and windows.

An XAssocTable can be used to type X resources. For example, to create three or
four types of windows with different properties, each window ID is associated with a
pointer to a user-defined window property data structure. (A generic type, called
XID, is defined in XLIB.H.)

Follow these guidelines when using an XAssocTable.

v Ensure the correct display is active before initiating an XAssocTable function,
because all XIDs are relative to a specified display.

v Restrict the size of the table (number of buckets in the hashing system) to a
power of two, and assign no more than eight XIDs for each bucket to maximize
the efficiency of the table.

There is no restriction on the number of XIDs for each table or display, or the
number of displays for each table.

Table 45 lists the Associate table functions and provides a short description of each
function.

Table 45. Associate table functions

Routine Description

XCreateAssocTable () Returns a pointer to the newly created associate table.

XDeleteAssoc() Deletes an entry from the specified associate table.

XDestroyAssocTable() Frees memory allocated to the specified associate table.

XLookUpAssoc() Obtains data from the specified associate table.

XMakeAssoc() Creates an entry in the specified associate table.

Miscellaneous utility routines
The MIT X Miscellaneous Utility routines are included in hlq.SEZAX11L. These are
a set of common utility functions that have been useful to application writers.

366 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 46 lists the Miscellaneous utility routines and provides a short description of
each routine.

Table 46. Miscellaneous utility routines

Routine Description

XctCreate() Creates an XctData structure for parsing a Compound
Text string.

XctFree() Frees all data associated with the XctData structure.

XctNextItem() Parses the next item from the Compound Text string.

XctReset() Resets the XctData structure to reparse the Compound
Text string.

XmuAddCloseDisplayHook() Adds a callback for the given display.

XmuAddInitializer() Registers a procedure to be invoked the first time
XmuCallInitializers is called on a given application context.

XmuAllStandardColormaps() Creates all of the appropriate standard colormaps.

XmuCallInitializers() Calls each of the procedures that have been registered
with XmuAddInitializer.

XmuClientWindow() Finds a window at or below the specified window.

XmuCompareISOLatin1() Compares two strings, ignoring case differences.

XmuConvertStandardSelection() Converts many standard selections.

XmuCopyISOLatin1Lowered() Copies a string, changing all Latin-1 uppercase letters to
lowercase.

XmuCopyISOLatin1Uppered() Copies a string, changing all Latin-1 lowercase letters to
uppercase.

XmuCreateColormap() Creates a colormap.

XmuCreatePixmapFromBitmap() Creates a pixmap of the specified width, height, and
depth.

XmuCreateStippledPixmap() Creates a two-pixel by one-pixel stippled pixmap of
specified depth on the specified screen.

XmuCursorNameToIndex() Returns the index in the standard cursor font for the name
of a standard cursor.

XmuCvtFunctionToCallback() Converts a callback procedure to a callback list containing
that procedure.

XmuCvtStringToBackingStore() Converts a string to a backing-store integer.

XmuCvtStringToBitmap() Creates a bit map suitable for window manager icons.

XmuCvtStringToCursor() Converts a string to a Cursor.

XmuCvtStringToJustify() Converts a string to an XtJustify enumeration value.

XmuCvtStringToLong() Converts a string to an integer of type long.

XmuCvtStringToOrientation() Converts a string to an XtOrientation enumeration value.

XmuCvtStringToShapeStyle() Converts a string to an integer shape style.

XmuCvtStringToWidget() Converts a string to an immediate child widget of the
parent widget passed as an argument.

XmuDeleteStandardColormap() Removes the specified property from the specified screen.

XmuDQAddDisplay() Adds the specified display to the queue.

XmuDQCreate() Creates and returns an empty XmuDisplayQueue.

XmuDQDestroy() Releases all memory associated with the specified queue.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 367

Table 46. Miscellaneous utility routines (continued)

Routine Description

XmuDQLookupDisplay() Returns the queue entry for the specified display.

XmuDQNDisplays() Returns the number of displays in the specified queue.

XmuDQRemoveDisplay() Removes the specified display from the specified queue.

XmuDrawLogo() Draws the official X Window System logo.

XmuDrawRoundedRectangle() Draws a rounded rectangle.

XmuFillRoundedRectangle() Draws a filled rounded rectangle.

XmuGetAtomName() Returns the name of an Atom.

XmuGetColormapAllocation() Determines the best allocation of reds, greens, and blues
in a standard colormap.

XmuGetHostname() Returns the host name.

XmuInternAtom() Caches the Atom value for one or more displays.

XmuInternStrings() Converts a list of atom names into Atom values.

XmuLocateBitmapFile() Reads a file in standard bit map file format.

XmuLookupAPL() This function is similar to XLookupString, except that it
maps a key event to an APL string.

XmuLookupArabic() This function is similar to XLookupString, except that it
maps a key event to a Latin and Arabic (ISO 8859-6)
string.

XmuLookupCloseDisplayHook() Determines if a callback is installed.

XmuLookupCyrillic() This function is similar to XLookupString, except that it
maps a key event to a Latin and Cyrillic (ISO 8859-5)
string.

XmuLookupGreek() This function is similar to XLookupString, except that it
maps a key event to a Latin and Greek (ISO 8859-7)
string.

XmuLookupHebrew() This function is similar to XLookupString, except that it
maps a key event to a Latin and Hebrew (ISO 8859-8)
string.

XmuLookupJISX0201() This function is similar to XLookupString, except that it
maps a key event to a string in the JIS X0201-1976
encoding.

XmuLookupKana() This function is similar to XLookupString, except that it
maps a key event to a string in the JIS X0201-1976
encoding.

XmuLookupLatin1() This function is identical to XLookupString.

XmuLookupLatin2() This function is similar to XLookupString, except that it
maps a key event to a Latin-2 (ISO 8859-2) string.

XmuLookupLatin3() This function is similar to XLookupString, except that it
maps a key event to a Latin-3 (ISO 8859-3) string.

XmuLookupLatin4() This function is similar to XLookupString, except that it
maps a key event to a Latin-4 (ISO 8859-4) string.

XmuLookupStandardColormap() Creates or replaces a standard colormap if one does not
currently exist.

XmuLookupString() Maps a key event into a specific key symbol set.

XmuMakeAtom() Creates and initializes an opaque object.

368 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 46. Miscellaneous utility routines (continued)

Routine Description

XmuNameOfAtom() Returns the name of an AtomPtr.

XmuPrintDefaultErrorMessage() Prints an error message, equivalent to Xlib’s default error
message.

XmuReadBitmapData() Reads a standard bit map file description.

XmuReadBitmapDataFromFile() Reads a standard bit map file description from the
specified file.

XmuReleaseStippledPixmap() Frees a pixmap created with XmuCreateStippledPixmap.

XmuRemoveCloseDisplayHook() Deletes a callback that has been added with
XmuAddCloseDisplayHook.

XmuReshapeWidget() Reshapes the specified widget, using the Shape
extension.

XmuScreenOfWindow() Returns the screen on which the specified window was
created.

XmuSimpleErrorHandler() A simple error handler for Xlib error conditions.

XmuStandardColormap() Creates a standard colormap for the given screen.

XmuUpdateMapHints() Clears the PPosition and PSize flags and sets the
USPosition and USSize flags.

XmuVisualStandardColormaps() Creates all of the appropriate standard colormaps for a
given visual.

X authorization routines
The MIT X Authorization routines are included in hlq.SEZAX11L. These routines
are used to deal with X authorization data in X clients.

Table 47 lists the X authorization routines and provides a short description of each
routine.

Table 47. Authorization routines

Routine Description

XauFileName() Generates the default authorization file name.

XauReadAuth() Reads the next entry from the authfile.

XuWriteAuth() Writes an authorization entry to the authfile.

XauGetAuthByAddr() Searches for an authorization entry.

XauLockAuth() Does the work necessary to synchronously update an
authorization file.

XauUnlockAuth() Undoes the work of XauLockAuth.

XauDisposeAuth() Frees storage allocated to hold an authorization entry.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 369

X Window System toolkit
An X Window System Toolkit is a set of library functions layered on top of the
X Window System Xlib functions that allows you to simplify the design of
applications by providing an underlying set of common user interface functions.
Included are mechanisms for defining and expanding interclient and intracomponent
interaction independently, masking implementation details from both the application
and component implementor.

An X Window System Toolkit consists of the following:

v A set of programming mechanisms, called Intrinsics, that are used to build
widgets.

v An architectural model to help programmers design new widgets, with enough
flexibility to accommodate different application interface layers.

v A consistent interface, in the form of a coordinated set of widgets and
composition policies, some of which are application domain-specific, while others
are common across several application domains.

The fundamental data type of the X Window System Toolkit is the widget. A widget
is allocated dynamically and contains state information. Every widget belongs to
one widget class that is allocated statically and initialized. The widget class contains
the operations allowed on widgets of that class.

An X Window System Toolkit manages the following functions:

v Toolkit initialization

v Widgets and widget geometry

v Memory

v Window, data set, and timer events

v Input focus

v Selections

v Resources and resource conversion

v Translation of events

v Graphics contexts

v Pixmaps

v Errors and warnings

You must remap many of the X Widget and X Intrinsics routine names. This
remapping is done in a header file called XT™@REMAP.H. This file is automatically
included by the INTRINSIC.H header file. In debugging your application, you can
refer to the XT@REMAP.H file to find the remapped names of the X Toolkit
routines.

Some of the X Window System header data sets have been renamed from their
original distribution names, because of the data set naming conventions in the MVS
environment. Such name changes are generally restricted to those header files
used internally by the actual widget code, rather than the application header files, to
minimize the number of changes required for an application to be ported to the
MVS environment.

In porting applications to the MVS environment, you may have to make changes to
header file names in Table 48 on page 371.

370 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 48. X Intrinsic header file names

MIT distribution name TCP/IP name

CompositeI.h ComposiI.h

CompositeP.h ComposiP.h

ConstrainP.h ConstraP.h

IntrinsicI.h IntriniI.h

IntrinsicP.h IntriniP.h

PassivGraI.h PassivGr.h

ProtocolsP.h ProtocoP.h

SelectionI.h SelectiI.h

WindowObjP.h WindowOP.h

Xt Intrinsics routines
Table 49 provides the Xt Intrinsics routines and a short description of each routine.

Table 49. Xt Intrinsics routines

Routine Description

CompositeClassPartInitialize Initializes the CompositeClassPart of a composite widget.

CompositeDeleteChild Deletes a child widget from a composite widget.

CompositeDestroy Destroys a composite widget.

CompositeInitialize Initializes a composite widget structure.

CompositeInsertChild Inserts a child widget in a composite widget.

RemoveCallback Removes a callback procedure from a callback list.

XrmCompileResourceList Compiles an XtResourceList into an XrmResourceList.

XtAddActions Declares an action table and registers it with the
translation manager

XtAddCallback Adds a callback procedure to the callback list of the
specified widget.

XtAddCallbacks Adds a list of callback procedures to the callback list of
specified widget.

XtAddConverter Adds a new converter.

XtAddEventHandler Registers an event handler procedure with the dispatch
mechanism when an event matching the mask occurs on
the specified widget.

XtAddExposureToRegion Computes the union of the rectangle defined by the
specified exposure event and region.

XtAddGrab Redirects user input to a model widget.

XtAddInput Registers a new source of events.

XtAddRawEventHandler Registers an event handler procedure with the dispatch
mechanism without causing the server to select for that
event.

XtAddTimeOut Creates a timeout value in the default application context
and returns an identifier for it.

XtAddWorkProc Registers a work procedure in the default application
context.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 371

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtAppAddActionHook Adds an actionhook procedure to an application context.

XtAppAddActions Declares an action table and registers it with the
translation manager.

XtAppAddConverter Registers a new converter.

XtAppAddInput Registers a new file as an input source for a specified
application.

XtAppAddTimeOut Creates a timeout value and returns an identifier for it.

XtAppAddWorkProc Registers a work procedure for a specified procedure.

XtAppCreateShell Creates a top-level widget that is the root of a widget tree.

XtAppError Calls the installed unrecoverable error procedure.

XtAppErrorMsg Calls the high-level error handler.

XtAppGetErrorDatabase Obtains the error database and merges it with an
application or database specified by a widget.

XtAppGetErrorDatabaseText Obtains the error database text for an error or warning for
an error message handler.

XtAppGetSelectionTimeout Gets and returns the current selection timeout (ms) value.

XtAppInitialize A convenience routine for initializing the toolkit.

XtAppMainLoop Process input by calling XtAppNextEvent and
XtDispatchEvent.

XtAppNextEvent Returns the value from the top of a specified application
input queue.

XtAppPeekEvent Returns the value from the top of a specified application
input queue without removing input from queue.

XtAppPending Determines if the input queue has any events for a
specified application.

XtAppProcessEvent Processes applications that require direct control of the
processing for different types of input.

XtAppReleaseCacheRefs Decrements the reference count for the conversion entries
identified by the refs argument.

XtAppSetErrorHandler Registers a procedure to call on unrecoverable error
conditions. The default error handler prints the message to
standard error.

XtAppSetErrorMsgHandler Registers a procedure to call on unrecoverable error
conditions. The default error handler constructs a string
from the error resource database.

XtAppSetFallbackResources Sets the fallback resource list that will be loaded at display
initialization time.

XtAppSetSelectionTimeout Sets the Intrinsics selection timeout value.

XtAppSetTypeConverter Registers the specified type converter and destructor in all
application contexts created by the calling process.

XtAppSetWarningHandler Registers a procedure to call on nonfatal error conditions.
The default warning handler prints the message to
standard error.

XtAppSetWarningMsgHandler Registers a procedure to call on nonfatal error conditions.
The default warning handler constructs a string from error
resource database.

372 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtAppWarning Calls the installed nonfatal error procedure.

XtAppWarningMsg Calls the installed high-level warning handler.

XtAugmentTranslations Merges new translations into an existing widget translation
table.

XtBuildEventMask Retrieves the event mask for a specified widget.

XtCallAcceptFocus Calls the accept_focus procedure for the specified widget.

XtCallActionProc Searches for the named action routine and, if found, calls
it.

XtCallbackExclusive Calls customized code for callbacks to create pop-up
shell.

XtCallbackNone Calls customized code for callbacks to create pop-up
shell.

XtCallbackNonexclusive Calls customized code for callbacks to create pop-up
shell.

XtCallbackPopdown Pops down a shell that was mapped by callback functions.

XtCallbackReleaseCacheRef A callback that may be added to a callback list to release
a previously returned XtCacheRef value.

XtCallbackReleaseCacheRefList A callback that may be added to a callback list to release
a list of previously returned XtCacheRef value.

XtCallCallbackList Calls all callbacks on a callback list.

XtCallCallbacks Executes the callback procedures in a widget callback list.

XtCallConverter Looks up the specified type converter in the application
context and invokes the conversion routine.

XtCalloc Allocates and initializes an array.

XtClass Obtains the class of a widget and returns a pointer to the
widget class structure.

XtCloseDisplay Closes a display and removes it from an application
context.

XtConfigureWidget Moves and resizes the sibling widget of the child making
the geometry request.

XtConvert Invokes resource conversions.

XtConvertAndStore Looks up the type converter registered to convert
from_type to to_type and then calls XtCallConverter.

XtConvertCase Determines upper and lowercase equivalents for a
KeySym.

XtCopyAncestorSensitive Copies the sensitive value from a widget record.

XtCopyDefaultColormap Copies the default colormap from a widget record.

XtCopyDefaultDepth Copies the default depth from a widget record.

XtCopyFromParent Copies the parent from a widget record.

XtCopyScreen Copies the screen from a widget record.

XtCreateApplicationContext Creates an opaque type application context.

XtCreateApplicationShell Creates an application shell widget by calling
XtAppCreateShell.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 373

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtCreateManagedWidget Creates and manages a child widget in a single
procedure.

XtCreatePopupShell Creates a pop-up shell.

XtCreateWidget Creates an instance of a widget.

XtCreateWindow Calls XcreateWindow with the widget structure and
parameter.

XtDatabase Obtains the resource database for a particular display.

XtDestroyApplicationContext Destroys an application context.

XtDestroyGC Deallocates graphics context when it is no longer needed.

XtDestroyWidget Destroys a widget instance.

XtDirectConvert Invokes resource conversion.

XtDisownSelection Informs the Intrinsics selection mechanism that the
specified widget is to lose ownership of the selection.

XtDispatchEvent Receives X events and calls appropriate event handlers.

XtDisplay Returns the display pointer for the specified widget.

XtDisplayInitialize Initializes a display and adds it to an application context.

XtDisplayOfObject Returns the display pointer for the specified widget.

XtDisplayStringConversionWarning Issues a warning message for conversion routines.

XtDisplayToApplicationContext Retrieves the application context associated with a
Display.

XtError Calls the installed unrecoverable error procedure.

XtErrorMsg A low-level error and warning handler procedure type.

XtFindFile Searches for a file using substitutions in a path list.

XtFree Frees an allocated block of storage.

XtGetActionKeysym Retrieves the KeySym and modifiers that matched the
final event specification in a translation table entry.

XtGetApplicationNameAndClass Returns the application name and class as passed to
XtDisplayInitialize

XtGetApplicationResources Retrieves resources that are not specific to a widget, but
apply to the overall application.

XtGetConstraintResourceList Returns the constraint resource list for a particular widget.

XtGetErrorDatabase Obtains the error database and returns the address of the
error database.

XtGetErrorDatabaseText Obtains the error database text for an error or warning.

XtGetGC Returns a read-only sharable GC.

XtGetKeysymTable Returns a pointer to the KeySym to KeyCode mapping
table for a particular display.

XtGetMultiClickTime Returns the multiclick time setting.

XtGetResourceList Obtains the resource list structure for a particular class.

XtGetSelectionRequest Retrieves the SelectionRequest event that triggered the
convert_selection procedure.

XtGetSelectionTimeout Obtains the current selection timeout.

XtGetSelectionValue Obtains the selection value in a single, logical unit.

374 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtGetSelectionValueIncremental Obtains the selection value using incremental transfers.

XtGetSelectionValues Takes a list of target types and client data and obtains the
current value of the selection converted to each of the
targets.

XtGetSelectionValuesIncremental A function similar to XtGetSelectionValueIncremental
except that it takes a list of targets and client_data.

XtGetSubresources Obtains resources other than widgets.

XtGetSubvalues Retrieves the current value of a nonwidget resource data
associated with a widget instance.

XtGetValues Retrieves the current value of a resource associated with
a widget instance.

XtGrabButton Passively grabs a single pointer button.

XtGrabKey Passively grabs a single key of the keyboard.

XtGrabKeyboard Actively grabs the keyboard.

XtGrabPointer Actively grabs the pointer.

XtHasCallbacks Finds the status of a specified widget callback list.

XtInitialize Initializes the toolkit, application, and shell.

XtInitializeWidgetClass Initializes a widget class without creating any widgets.

XtInsertEventHandler Registers an event handler procedure that receives events
before or after all previously registered event handlers.

XtInsertRawEventHandler Registers an event handler procedure that receives events
before or after all previously registered event handlers
without selecting for the events.

XtInstallAccelerators Installs accelerators from a source widget to destination
widget.

XtInstallAllAccelerators Installs all the accelerators from a widget and all the
descendants of the widget onto one destination widget.

XtIsApplicationShell Determines whether a specified widget is a subclass of an
application shell widget.

XtIsComposite Determines whether a specified widget is a subclass of a
composite widget.

XtIsConstraint Determines whether a specified widget is a subclass of a
constraint widget.

XtIsManaged Determines the managed state of a specified child widget.

XtIsObject Determines whether a specified widget is a subclass of an
object widget.

XtIsOverrideShell Determines whether a specified widget is a subclass of an
override shell widget.

XtIsRealized Determines if a widget has been realized.

XtIsRectObj Determines whether a specified widget is a subclass of a
RectObj widget.

XtIsSensitive Determines the current sensitivity state of a widget.

XtIsShell Determines whether a specified widget is a subclass of a
shell widget.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 375

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtIsSubclass Determines whether a specified widget is in a specific
subclass.

XtIsTopLevelShell Determines whether a specified widget is a subclass of a
TopLevelShell widget.

XtIsTransientShell Determines whether a specified widget is a subclass of a
TransientShell widget.

XtIsVendorShell Determines whether a specified widget is a subclass of a
VendorShell widget.

XtIsWidget Determines whether a specified widget is a subclass of a
Widget widget.

XtIsWMShell Determines whether a specified widget is a subclass of a
WMShell widget.

XtKeysymToKeycodeList Returns the list of KeyCodes that map to a particular
KeySym.

XtLastTimestampProcessed Retrieves the timestamp from the most recent call to
XtDispatchEvent.

XtMainLoop An infinite loop that processes input.

XtMakeGeometryRequest A request from the child widget to a parent widget for a
geometry change.

XtMakeResizeRequest Makes a resize request from a widget.

XtMalloc Allocates storage.

XtManageChild Adds a single child to a parent widget list of managed
children.

XtManageChildren Adds a list of widgets to the geometry-managed,
displayable, subset of its composite parent widget.

XtMapWidget Maps a widget explicitly.

XtMenuPopupAction Pops up a menu when a pointer button is pressed or
when the pointer is moved into the widget.

XtMergeArgLists Merges two ArgList structures.

XtMoveWidget Moves a sibling widget of the child making the geometry
request.

XtName Returns a pointer to the instance name of the specified
object.

XtNameToWidget Translates a widget name to a widget instance.

XtNewString Copies an instance of a string.

XtNextEvent Returns the value from the header of the input queue.

XtOpenDisplay Opens, initializes, and adds a display to an application
context.

XtOverrideTranslations Overwrites existing translations with new translations.

XtOwnSelection Sets the selection owner when using atomic transfer.

XtOwnSelectionIncremental Sets the selection owner when using incremental
transfers.

XtParent Returns the parent widget for the specified widget.

XtParseAcceleratorTable Parses an accelerator table into the opaque internal
representation.

376 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtParseTranslationTable Compiles a translation table into the opaque internal
representation of type XtTranslations.

XtPeekEvent Returns the value from the front of the input queue without
removing it from the queue.

XtPending Determines if the input queue has events pending.

XtPopdown Unmaps a pop-up from within an application.

XtPopup Maps a pop-up from within an application.

XtPopupSpringLoaded Maps a spring-loaded pop-up from within an application.

XtProcessEvent Processes one input event, timeout, or alternate input
source.

XtQueryGeometry Queries the preferred geometry of a child widget.

XtRealizeWidget Realizes a widget instance.

XtRealloc Changes the size of an allocated block of storage,
sometimes moving it.

XtRegisterCaseConverter Registers a specified case converter.

XtRegisterGrabAction Registers button and key grabs for a widget window
according to the event bindings in the widget translation
table.

XtReleaseGC Deallocates a shared GC when it is no longer needed.

XtRemoveActionHook Removes an action hook procedure without destroying the
application context.

XtRemoveAllCallbacks Deletes all callback procedures from a specified widget
callback list.

XtRemoveCallback Deletes a callback procedure from a specified widget
callback list only if both the procedure and the client data
match.

XtRemoveCallbacks Deletes a list of callback procedures from a specified
widget callback list.

XtRemoveEventHandler Removes a previously registered event handler.

XtRemoveGrab Removes the redirection of user input to a modal widget.

XtRemoveInput Discontinues a source of input by causing the Intrinsics
read routine to stop watching for input from the input
source.

XtRemoveRawEventHandler Removes previously registered raw event handler.

XtRemoveTimeOut Clears a timeout value by removing the timeout.

XtRemoveWorkProc Removes the specified background work procedure.

XtResizeWidget Resizes a sibling widget of the child making the geometry
request.

XtResizeWindow Resizes a child widget that already has the values for its
width, height, and border width.

XtResolvePathname Searches for a file using standard substitutions in a path
list.

XtScreen Returns the screen pointer for the specified widget.

XtScreenOfObject Returns the screen pointer for the nearest ancestor of
object that is of class Widget.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 377

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtSetErrorHandler Registers a procedure to call under unrecoverable error
conditions.

XtSetErrorMsgHandler Registers a procedure to call under unrecoverable error
conditions.

XtSetKeyboardFocus Redirects keyboard input to a child of a composite widget
without calling XSetInputFocus.

XtSetKeyTranslator Registers a key translator.

XtSetMappedWhenManaged Changes the widget map_when_managed field.

XtSetMultiClickTime Sets the multi-click time for an application.

XtSetSelectionTimeout Sets the Intrinsics selection timeout.

XtSetSensitive Sets the sensitivity state of a widget.

XtSetSubvalues Sets the current value of a nonwidget resource associated
with an instance.

XtSetTypeConverter Registers a type converter for all application contexts in a
process.

XtSetValues Modifies the current value of a resource associated with
widget instance.

XtSetWarningHandler Registers a procedure to be called on non-fatal error
conditions.

XtSetWarningMsgHandler Registers a procedure to be called on nonfatal error
conditions.

XtSetWMColormapWindows Sets the value of the WM_COLORMAP_WINDOWS
property on a widget’s window.

XtStringConversionWarning A convenience routine for old format resource converters
that convert from strings.

XtSuperclass Obtains the superclass of a widget by returning a pointer
to the superclass structure of the widget.

XtToolkitInitialize Initializes the X Toolkit internals.

XtTranslateCoords Translates an [x,y] coordinate pair from widget coordinates
to root coordinates.

XtTranslateKey The default key translator routine.

XtTranslateKeycode Registers a key translator.

XtUngrabButton Cancels a passive button grab.

XtUngrabKey Cancels a passive key grab.

XtUngrabKeyboard Cancels an active keyboard grab.

XtUngrabPointer Cancels an active pointer grab.

XtUninstallTranslations Causes the entire translation table for widget to be
removed.

XtUnmanageChild Removes a single child from the managed set of its
parent.

XtUnmanageChildren Removes a list of children from the managed list of the
parent, but does not destroy the children widgets.

XtUnmapWidget Unmaps a widget explicitly.

XtUnrealizeWidget Destroys the associated widget and its descendants.

378 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 49. Xt Intrinsics routines (continued)

Routine Description

XtVaAppCreateShell Creates a top-level widget that is the root of a widget tree
using varargs lists.

XtVaAppInitialize Initializes the Xtk internals, creates an application context,
opens and initializes a display, and creates the initial
application shell instance using varargs lists.

XtVaCreateArgsList Dynamically allocates a varargs list for use with
XtVaNestedList in multiple calls.

XtVaCreateManagedWidget Creates and manages a child widget in a single procedure
using varargs lists.

XtVaCreatePopupShell Creates a pop-up shell using varargs lists.

XtVaCreateWidget Creates an instance of a widget using varargs lists.

XtVaGetApplicationResources Retrieves resources for the overall application using
varargs list.

XtVaGetSubresources Fetches resources for widget subparts using varargs list.

XtVaGetSubvalues Retrieves the current values of nonwidget resources
associated with a widget instance using varargs lists.

XtVaGetValues Retrieves the current values of resources associated with
a widget instance using varargs lists.

XtVaSetSubvalues Sets the current values of nonwidget resources associated
with a widget instance using varargs lists.

XtVaSetValues Modifies the current values of resources associated with a
widget instance using varargs lists.

XtWarning Calls the installed non-fatal error procedure.

XtWarningMsg Calls the installed high-level warning handler.

XtWidgetToApplicationContext Gets the application context for given widget.

XtWindow Returns the window of the specified widget.

XtWindowOfObject Returns the window for the nearest ancestor of object that
is of class Widget.

XtWindowToWidget Translates a window and display pointer into a widget
instance.

Application resources
X applications can be modified at run time by a set of resources. Applications that
make use of an X Window System toolkit can be modified by additional sets of
application resources. These resources are searched until a resource specification
is found. The X Intrinsics determine the actual search order used for determining a
resource value.

The search order used in the TSO environment, in descending order of preference,
is:

1. Command Line

Standard arguments include:

a. Command switches (-display, -fg, -foreground, +rv)

b. Resource manager directives (-name, -xrm)

c. Natural language directive (-xnllanguage)

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 379

2. User Environment File

Use the source found from the user_id.XDEFAULT.host data set. In this case,
host is the string returned by the gethostname() call.

3. Server and User Preference Resources

Use the first source found from:

a. RESOURCE_MANAGER property on the root window [screen0]

b. user_id.X.DEFAULTS data set

4. Application Class Resources

Use the first source found from:

a. The default application resource data set named user_id.XAPDF.classname,
where classname is the application specified class name.

The MVS data set name XAPDF is modified, if a natural language directive
is specified as xnllanguageXAPDF, where xnllanguage is the string specified
by the natural language directive.

b. Fallback resources defined by XtAppSetFallbackResources within the
application.

Athena widget support
The X Window System support with TCP/IP includes the widget set developed at
Massachusetts Institute of Technology (MIT), which is generally known as the
Athena widget set.

The Athena widget set supports the following widgets:

AsciiSink
AsciiSrc
AsciiText
Box
Clock
Command
Dialog
Form
Grip
Label
List
Logo
Mailbox
MenuButton

Paned
Scrollbar
Simple
SimpleMenu
Sme (Simple Menu Entry)
SmeBSB (BSB Menu Entry)
SmeLine
StripChart
Text
TextSink
TextSrc
Toggle
VPaned
Viewport

Table 50 provides the Athena widget routines with a short description of each
routine.

Table 50. Athena widget routines

Routine Description

XawAsciiSave Saves the changes made in the current text source into a
file.

XawAsciiSaveAsFile Saves the contents of the current text buffer into a named
file.

XawAsciiSourceChanged Determines if the text buffer in an AsciiSrc object has
changed.

XawAsciiSourceFreeString Frees the storage associated with the string from an
AsciiSrc widget requested with a call to XtGetValues.

380 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 50. Athena widget routines (continued)

Routine Description

XawDialogAddButton Adds a new button to a Dialog widget.

XawDialogGetValueString Returns the character string in the text field of a Dialog
Widget.

XawDiskSourceCreate Creates a disk source.

XawFormDoLayout Forces or defers a relayout of the Form.

XawInitializeWidgetSet Forces a reference to vendor shell so that the one in this
widget is installed.

XawListChange Changes the list that is displayed.

XawListHighlight Highlights an item in the list.

XawListShowCurrent Retrieves the list element that is currently set.

XawListUnhighlight Unhighlights an item in the list.

XawPanedAllowResize Enables or disables a child’s request for pane resizing.

XawPanedGetMinMax Retrieves the minimum and maximum height settings for a
pane.

XawPanedGetNumSub Retrieves the number of panes in a paned widget.

XawPanedSetMinMax Sets the minimum and maximum height settings for a
pane.

XawPanedSetRefigureMode Enables or disables automatic recalculation of pane sizes
and positions.

XawScrollbarSetThumb Sets the position and length of a Scrollbar thumb.

XawSimpleMenuAddGlobalActions Registers an XawPositionSimpleMenu global action
routine.

XawSimpleMenuClearActiveEntry Clears the SimpleMenu widget internal information about
the currently highlighted menu entry.

XawSimpleMenuGetActiveEntry Gets the currently highlighted menu entry.

XawStringSourceCreate Creates a string source.

XawTextDisableRedisplay Disables redisplay while making several changes to a Text
Widget.

XawTextDisplay Displays batched updates.

XawTextDisplayCaret Enables and disables the insert point.

XawTextEnableRedisplay Enables redisplay.

XawTextGetInsertionPoint Returns the current position of the insert point.

XawTextGetSelectionPos Retrieves the text that has been selected by this text
widget.

XawTextGetSource Retrieves the current text source for the specified widget.

XawTextInvalidate Redisplays a range of characters.

XawTextReplace Modifies the text in an editable Text widget.

XawTextSearch Searches for a string in a Text widget.

XawTextSetInsertionPoint Moves the insert point to the specified source position.

XawTextSetLastPos Sets the last position data in an AsciiSource Object.

XawTextSetSelection Selects a piece of text.

XawTextSetSelectionArray Assigns a new selection array to a text widget.

XawTextSetSource Replaces the text source in the specified widget.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 381

Table 50. Athena widget routines (continued)

Routine Description

XawTextSinkClearToBackground Clears a region of the sink to the background color.

XawTextSinkDisplayText Stub function that in subclasses will display text.

XawTextSinkFindDistance Finds the Pixel Distance between two text positions.

XawTextSinkFindPosition Finds a position in the text.

XawTextSinkGetCursorBounds Finds the bounding box for the insert cursor.

XawTextSinkInsertCursor Places the InsertCursor.

XawTextSinkMaxHeight Finds the minimum height that contains a given number of
lines.

XawTextSinkMaxLines Finds the maximum number of lines that fit in a given
height.

XawTextSinkResolve Resolves a location to a position.

XawTextSinkSetTabs Sets the Tab stops.

XawTextSourceConvertSelection Dummy selection converter.

XawTextSourceRead Reads the source into a buffer.

XawTextSourceReplace Replaces a block of text with new text.

XawTextSourceScan Scans the text source for the number and type of item
specified.

XawTextSourceSearch Searches the text source for the text block passed.

XawTextSourceSetSelection Allows special setting of the selection.

XawTextTopPosition Returns the character position of the left-most character
on the first line displayed in the widget.

XawTextUnsetSelection Unhighlights previously highlighted text in a widget.

XawToggleChangeRadioGroup Allows a toggle widget to change radio groups.

XawToggleGetCurrent Returns the RadioData associated with the toggle widget
that is currently active in a toggle group.

XawToggleSetCurrent Sets the Toggle widget associated with the radio_data
specified.

XawToggleUnsetCurrent Unsets all Toggles in the radio_group specified.

Some of the header files have been renamed from their original distribution names
because of the data set naming conventions in the MVS environment. In addition,
some of the header file names were changed to eliminate duplicate data set names
with the OSF/Motif-based Widget support. If your application uses these header
files, you must use the new header file names in Table 51. These data set members
can be found in the hlq.SEZACMAC partitioned data set. They carry an H extension
in this text to distinguish them as header files.

Table 51. Athena header file names

MIT distribution name TCP/IP name

AsciiSinkP.h AscSinkP.h

AsciiSrcP.h AscSrcP.h

AsciiTextP.h AscTextP.h

Command.h ACommand.h

CommandP.h ACommanP.h

382 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 51. Athena header file names (continued)

MIT distribution name TCP/IP name

Form.h AForm.h

FormP.h AFormP.h

Label.h ALabel.h

LabelP.h ALabelP.h

List.h AList.h

ListP.h AListP.h

MenuButtoP.h MenuButP.h

Scrollbar.h AScrollb.h

ScrollbarP.h AScrollP.h

SimpleMenP.h SimpleMP.h

StripCharP.h StripChP.h

TemplateP.h TemplatP.h

Text.h AText.h

TextP.h ATextP.h

TextSinkP.h TextSinP.h

TextSrcP.h ATextSrP.h

ViewportP.h ViewporP.h

OSF/Motif-based widget support
The X Window System support with TCP/IP includes the OSF/Motif-based widget
set (Release 1.1).

The OSF/Motif-based Widget set supports the following gadgets and widgets:

ArrowButton, ArrowGadget,
and ArrowButtonGadget

BulletinBoard
CascadeButton

and CascadeButtonGadget
Command
DialogShell
DrawingArea
DrawnButton
Form
Frame
Label and LabelGadget
List
MainWindow

MenuShell
MessageBox
PanedWindow
PushButton and PushButtonGadget
RowColumn
Sash
Scale
ScrollBar
ScrolledWindow
SelectionBox and SelectionDialog
Separator and SeparatorGadget
Text
ToggleButton and ToggleButtonGadget

FileSelectionBox and FileSelectionDialog widgets are not supported in TCP/IP
Version 3 Release 2 for MVS.

To run a Motif-based application, you must copy the module
hlq.SEZAINST(KEYSYMDB) to hlq.XKEYSYM.DB or user_id.XKEYSYM.DB to
make it available to your application at run-time.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 383

Note: The EZAGETIN job copies hlq.SEZAINST(KEYSYMDB) to
hlq.XKEYSYM.DB.

Some of the header files have been renamed from their original distribution names
because of the data set naming conventions in the MVS environment. Such name
changes are generally restricted to those header files used internally by the actual
widget code, rather than the application header data sets, to minimize the number
of changes required for an application to be ported to the MVS environment.

When porting applications to the MVS environment, you may have to make
changes to the header file names in Table 52. These data set members can be
found in the hlq.SEZACMAC partitioned data set. They carry an H extension in this
text to distinguish them as header files.

Table 52. OSF/Motif header file names

OSF/Motif distribution name TCP/IP name

BulletinBP.h BulletBP.h

CascadeBG.h CascadBG.h

CascadeBGP.h CascaBGP.h

CascadeBP.h CascadBP.h

CutPasteP.h CutPastP.h

DrawingAP.h DrawinAP.h

ExtObjectP.h ExtObjeP.h

MenuShellP.h MenuSheP.h

MessageBP.h MessagBP.h

ProtocolsP.h ProtocoP.h

RowColumnP.h RowColuP.h

ScrollBarP.h ScrollBP.h

ScrolledWP.h ScrollWP.h

SelectioB.h SelectiB.h

SelectioBP.h SelectBP.h

SeparatoG.h SeparatG.h

SeparatoGP.h SeparaGP.h

SeparatorP.h SeparatP.h

ToggleBGP.h TogglBGP.h

TraversalI.h TraversI.h

VirtKeysP.h VirtKeyP.h

z/OS UNIX System Services support
The following sections provide information about using z/OS UNIX System Services
for the X Window System.

For information about using z/OS UNIX System Services sockets, refer to z/OS
C/C++ Run-Time Library Reference.

384 z/OS V1R4.0 CS: IP Programmer’s Reference

What is provided with z/OS UNIX System Services
The z/OS UNIX System Services X Window System support provided with TCP/IP
includes the following APIs:

v hlq.SEZAROE1 and hlq.SEZACMTX compiled to run under z/OS UNIX System
Services. hlq.SEZAROE1 is a combination of the reentrant versions of the
X Window System libraries (refer to z/OS Communications Server: IP Application
Programming Interface Guide for information on data sets).

v hlq.SEZAROE2 (z/OS UNIX System Services Athena Widget set for reentrant
modules).

v hlq.SEZAROE3 (z/OS UNIX System Services Motif Widget set for reentrant
modules).

The SEZAROE1, SEZAROE2, and SEZAROE3 library members are:

– Fixed block 80, in object deck format.

– Compiled with the C/370 RENT compile-time option.

– Used as input for reentrant z/OS UNIX System Services X Window System
and socket programs.

– Passed to the C/370 prelinker. Use the prelink utility to combine all input text
decks into a single text deck.

z/OS UNIX System Services software requirements
Application programs using the X Window System API in z/OS UNIX System
Services are written in C and should be compiled, linked, and executed using the
z/OS C/C++ Compiler and the run-time environment of the Language Environment
for MVS that is provided with z/OS.

You must have the AD/Cycle C/370 Library V1R2M0 and the AD/Cycle LE/370
Library V1R3M0 available when you compile and link your program.

You must include MANIFEST.H as the first #include statement in the source of
every z/OS UNIX System Services MVS X Window System application program to
remap the socket functions to the correct run-time library names.

In z/OS UNIX System Services, the DISPLAY environment variable is used by the
X Window System to identify the host name of the target display.

z/OS UNIX System Services application resource file
The X Window System allows you to modify certain characteristics of an application
at run time by means of application resources. Typically, application resources are
set to tailor the appearance and possibly the behavior of an application. The
application resources can specify information about application window sizes,
placement, coloring, font usage, and other functional details.

In the z/OS UNIX System Services environment, this information can be found in
the file:
/u/user_id/.Xdefaults

where:
/u/user_id

is found from the environment variable home.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 385

Identifying the target display in z/OS UNIX System Services
The DISPLAY environment variable is used by the X Window System to identify the
host name of the target display.

The following is the format of the DISPLAY environment variable:
host_name:target_server.target_screen

Value Description

host_name
Specifies the host name or IP address of the host machine on which the
X Window System server is running.

target_server
Specifies the number of the display server on the host machine.

target_screen
Specifies the screen to be used on the target server.

For more information about resolving a host name to an IP address, refer to the
z/OS C/C++ Run-Time Library Reference.

Compiling and linking with z/OS UNIX System Services
The following steps describe how to compile, prelink, link-edit, and run your z/OS
UNIX System Services X Window System application under MVS batch, using the
EDCCPLG cataloged procedure supplied by IBM.

You must make the following changes to the EDCCPLG cataloged procedure, which
is supplied with AD/Cycle C/370 Version 1 Release 2 Compiler Licensed Program
(5688-216).

In the compile step, make the following changes:

v Change the CPARM parameters to specify one of the following:

– CPARM=‘DEF(IBMCPP),RENT,LO’

– CPARM=‘DEF(IBMCPP,_POSIX1_ SOURCE=1),RENT,LO’

– CPARM=‘DEF(IBMCPP,_OPEN_ SYS),RENT,LO’

– CPARM=‘DEF(IBMCPP,_OPEN_ SOCKETS,_POSIX1_SOURCE=1),RENT,LO’

– CPARM=‘DEF(IBMCPP,_OPEN_ SOCKETS,_OPEN_SYS),RENT,LO’

Note: The recommended CPARMS are:
CPARM=‘DEF(IBMCPP,_OPEN_SOCKETS,_POSIX1_SOURCE=1),RENT,LO’

RENT is the reentrant option and LO is the long-name option. You must specify
these options to use z/OS UNIX System Services MVS functions. You must also
specify the feature text macro, IBMCPP.

If you choose to just access the z/OS UNIX System Services MVS functions
defined by the POSIX standards 1003.1, 1003.1a, 1003.2, and 1003.4a, then
specify the feature test macro POSIX1_SOURCE=1 to expose the appropriate
definitions for the read(), write(), fcntl(), and close() functions.

If you choose to access all of the z/OS UNIX System Services MVS functions
supported by C/370, including those defined by the POSIX standards 1003.1,
1003.1a, 1003.2, and 1003.4a, then specify the feature test macro _OPEN_SYS.

386 z/OS V1R4.0 CS: IP Programmer’s Reference

If you choose to access the z/OS UNIX System Services MVS socket functions
or errno values, then specify the feature test macro _OPEN_SOCKETS to
expose the socket-related definitions in all of the include files.

Because you are required to compile with the RENT and LO options, you must
run a prelink step before linking your application.

Note: Compile all C source using the def(IBMCPP) preprocessor symbol. See
“Compiling and linking” on page 339 for information about compiling and
linking your program in MVS.

For a complete discussion of all of the AD/Cycle C/370 parameters, refer to the
AD/Cycle C/370 Programming Guide.

v Add the following lines after the //SYSLIB DD statement for the IBM C/370 library
edc.v1r2m0.SEDCDHDR:

// DD DSN=sys1.SFOMHDRS,DISP=SHR
// DD DSN=hlq.SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:
//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

In the prelink edit step, make the following changes:

v Add the following prelink parameter:
PPARM=‘OMVS’

v To link-edit programs that use only X11 library functions, add the following line
after the prelink //SYSLIB DD statement for the IBM AD/Cycle C/370 library
cee.v1r3m0.SCEEOBJ:

// DD DSN=hlq.SEZAROE1,DISP=SHR

v To link-edit programs that use the Athena Toolkit functions, including Athena
Widget sets, add the following lines after the prelink //SYSLIB DD statement for
the IBM AD/Cycle C/370 library cee.v1r3m0.SCEEOBJ:

// DD DSN=hlq.SEZAROE2,DISP=SHR
// DD DSN=hlq.SEZAROE1,DISP=SHR

v To link-edit programs that use the OSF/Motif Toolkit functions, add the following
lines after the prelink //SYSLIB DD statement for the IBM AD/Cycle C/370 library
cee.v1r3m0.SCEEOBJ:

// DD DSN=hlq.SEZAROE3,DISP=SHR
// DD DSN=hlq.SEZAROE1,DISP=SHR

For a complete discussion of compiling and link-editing the X Window System in
MVS z/OS UNIX System Services, refer to the z/OS C/C++ Run-Time Library
Reference.

To execute your program in the z/OS UNIX System Services shell, make the
following changes:

v Set the DISPLAY environment variable to the name or IP address of the X server
on which you want to display the application output. The following is an example:

DISPLAY=CHARM.RALEIGH.IBM.COM:0.0
export DISPLAY

v Allow the host application access to the X server.

On the workstation where you want to display the application output, you must
grant permission for the MVS host to access the X server. To do this, enter the
xhost command:

xhost ralmvs1

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 387

Compiling and linking with z/OS UNIX System Services using c89
The following c89 utility options can be specified:

v IBMCPP must always be specified.

v The c89 utility assumes _OPEN_SYS and includes all of the z/OS UNIX System
Services MVS functions supported by C/370. However, _OPEN_SOCKETS must
be specified if z/OS UNIX System Services MVS sockets are being used by the
application program.

-D IBMCPP
-D _OPEN_SOCKETS

Notes:

1. When you compile and link-edit your application program using the c89 utility
with z/OS UNIX System Services sockets and TCP/IP Version 3 Release 1
for X Window System, you must include the z/OS UNIX System Services
socket library before the X Window System include files:

-l“//‘
sys1.SFOMHDRS’”

-l“//‘hlq.SEZACMAC’”

-l“//‘hlq.SEZAROE1’”

2. The flag for the prelinker libraries, -l, is a dash followed by the lowercase
letter L.

v If the Athena Toolkit functions are required, then also specify:
-l“//‘hlq.SEZAROE2’”

v If the OSF/Motif Toolkit functions are required, then also specify:
-l“//‘hlq.SEZAROE3’”

To execute your program under TSO, enter the following:
CALL ‘USER.MYPROG.LOAD(PROGRAM1)’ ‘POSIX(ON)’

This loads the run-time library from cee.v1r3m0.SCEERUN. To use the z/OS UNIX
System Services MVS C/370 functions, you must either specify the run-time option:

POSIX(ON)

or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

Standard X client applications for z/OS UNIX System Services
For information about standard X Client applications for X Windows z/OS UNIX
System Services, see “Standard X client applications” on page 344.

Application resources for z/OS UNIX System Services
X applications can be modified at run time by a set of resources. Applications that
make use of an X Window System toolkit can be modified by additional sets of
application resources. These resources are searched until a resource specification
is found. The X Intrinsics determine the actual search order used for determining a
resource value.

The search order used in the z/OS UNIX System Services environment, in
descending order of preference, is:

1. Command Line

Standard arguments include:

388 z/OS V1R4.0 CS: IP Programmer’s Reference

a. Command switches (-display, -fg, -foreground, +rv)

b. Resource manager directives (-name, -xrm)

c. Natural language directives (-xnllanguage)

2. User Environment File

Use the source found from the file /u/user_id/.Xdefault-host.
/u/user_id/.Xdefault-host is found from the environment variable home, and
host is the string returned by the gethostname() call.

3. Server and User Preference Resources

Use the first source found from:

a. RESOURCE_MANAGER property on the root window [screen0]

b. /u/user_id/.Xdefaults

/u/user_id is found from the environment variable home.

4. Application Class Resources

Use the first source found from:

a. The default application resource file
/u/user_id/classname

where classname is the application specified class name, and /u/user_id is
found from the environment variable home.

b. Fallback resources defined in the file /usr/lib/X11/app-
defaults/classnamewhere classname is the application-specified class
name.

Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1 389

390 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix E. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New protocols
are being designed and implemented by researchers and are brought to the
attention of the Internet community in the form of RFCs. Some of these protocols
are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

855 Telnet Option Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

858 Telnet Suppress Go Ahead Option J.B. Postel, J.K. Reynolds

859 Telnet Status Option J.B. Postel, J.K. Reynolds

860 Telnet Timing Mark Option J.B. Postel, J.K. Reynolds

861 Telnet Extended Options—List Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

896 Congestion Control in IP/TCP Internetworks J. Nagle

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

© Copyright IBM Corp. 1989, 2002 391

||

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1006 ISO Transport Service on top of the TCP Version 3 M.T.Rose, D.E. Cass

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1011 Official Internet Protocols J. Reynolds, J. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell,
J.S. Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks
J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun
Microsystems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1060 Assigned Numbers J. Reynolds, J. Postel

1073 Telnet Window Size Option D. Waitzman

1079 Telnet Terminal Speed Option C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1096 Telnet X Display Location Option G. Marcy

1101 DNS encoding of network names and other types P.V. Mockapetris

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

392 z/OS V1R4.0 CS: IP Programmer’s Reference

||

||

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-Based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP) J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1158 Management Information Base for Network Management of TCP/IP-based
internets: MIB-II M.T. Rose

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1184 Telnet Linemode Option D. Borman

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

1191 Path MTU Discovery J. Mogul, S. Deering

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked “Experienced
Internet User” Questions G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 Address Mapping for DDN L. Morales, P. Hasse

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions G.S. Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

Appendix E. Related protocol specifications (RFCs) 393

||
|

||

||

1348 DNS NSAP RRs B. Manning

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis,
D. Robinson, R. Ullmann

1363 A Proposed Flow Specification C. Partridge

1372 Telnet Remote Flow Control Option D. Borman, C. L. Hedrick

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2—Carrying Additional Information G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

1416 Telnet Authentication Option D. Borman, ed.

1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1535 A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S.Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 IAB Official Protocol Standards J.B. Postel

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

394 z/OS V1R4.0 CS: IP Programmer’s Reference

||

||

||

||

1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions A.N. Marine, J. Reynolds, G.S. Malkin

1695 Definitions of Managed Objects for ATM Management Version 8.0 Using
SMIv2 M. Ahmed, K. Tesink

1706 DNS NSAP Resource Records B. Manning, R. Colella

1713 Tools for DNS debugging A. Romao

1723 RIP Version 2—Carrying Additional Information G. Malkin

1766 Tags for the Identification of Languages H. Alvestrand

1794 DNS Support for Load Balancing T. Brisco

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1876 A Means for Expressing Location Information in the Domain Name System
C. Davis, P. Vixie, T. Goodwin, I. Dickinson

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1901 Introduction to Community-Based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

1902 Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocols Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-Standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1982 Serial Number Arithmetic R. Elz, R. Bush

1995 Incremental Zone Transfer in DNS M. Ohta

Appendix E. Related protocol specifications (RFCs) 395

||

||

||
|

||
|

||

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P.
Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol Using
SMIv2 K. McCloghrie

2012 SNMPv2 Management Information Base for the Transmission Control
Protocol Using SMIv2 K. McCloghrie

2013 SNMPv2 Management Information Base for the User Datagram Protocol
Using SMIv2 K. McCloghrie

2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

2065 Domain Name System Security Extensions D. Eastlake, C. Kaufman

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2137 Secure Domain Name System Dynamic Update D. Eastlake

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System
R. Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP) Version 1 R. Braden, L. Zhang, S.
Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB Using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

396 z/OS V1R4.0 CS: IP Programmer’s Reference

||

||

||
|

||

||
|

||

||

||

||

||
|

||
|

||

||

||

||

2320 Definitions of Managed Objects for Classical IP and ARP over ATM Using
SMIv2 M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell,
S. Deering

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon,
R. Elz

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers K. Nichols, S. Blake, F. Baker, D. Black

2535 Domain Name System Security Extensions D. Eastlake

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake

2553 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2571 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

2572 Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick,
J. Johnson

2672 Non-Terminal DNS Name Redirection M. Crawford

2758 Definitions of Managed Objects for Service Level Agreements Performance
Monitoring K. White

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake, B. Wellington

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

Appendix E. Related protocol specifications (RFCs) 397

||

||

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||

||

||

||

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o, ed.

3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at the following Web address: http://www.rfc-editor.org/rfc.html

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

398 z/OS V1R4.0 CS: IP Programmer’s Reference

||

||
|

http://www.rfc-editor.org/rfc.html

Appendix F. Information APARs

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed
below. Documents updated for V1R4 are complete except for the updates
contained in the information APARs that may be issued after V1R4 documents
went to press.

2. Information APARs are predefined for z/OS V1R4 Communications Server and
may not contain updates.

3. Information APARs for OS/390 documents are in the document called OS/390
DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

4. Information APARs for z/OS documents are in the document called z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP manuals
Table 53 lists information APARs for IP documents.

Table 53. IP information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP API Guide ii13255 ii12861 ii12371 ii11635

IP CICS Sockets Guide ii13257 ii12862 ii11626

IP Configuration ii11620
ii12068
ii12353
ii12649
ii13018

IP Configuration Guide ii13244 ii12498
ii13087

ii12362
ii12493
ii13006

IP Configuration Reference ii13245 ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii13249 ii12503 ii12366
ii12495

ii11628

IP Messages Volume 1 ii13250 ii12857
ii13229

ii12367 ii11630
13230

IP Messages Volume 2 ii13251 ii12858 ii12368 ii11631

IP Messages Volume 3 ii13252 ii12859 ii12369
12990

ii11632
ii12883

IP Messages Volume 4 ii13253 ii12860

IP Migration ii13242 ii12497 ii12361 ii11618

© Copyright IBM Corp. 1989, 2002 399

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Table 53. IP information APARs (continued)

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP Network and Application Design
Guide

ii13243

IP Network Print Facility ii12864 ii11627

IP Programmer’s Reference ii13256 ii12505 ii11634

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

IP User’s Guide ii12365
ii13060

ii11625

IP User’s Guide and Commands ii13247 ii12501 ii12365
ii13060

ii11625

IP System Admin Guide ii13248 ii12502

Quick Reference ii13246 ii12500 ii12364

Information APARs for SNA manuals
Table 54 lists information APARs for SNA documents.

Table 54. SNA information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and z/OS CS

V1R1

CS for OS/390
2.8

Anynet SNA over TCP/IP ii11922

Anynet Sockets over SNA ii11921

CSM Guide

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

SNA Customization ii13240 ii12872 ii12388 ii11923

SNA Diagnosis ii13236 ii12490
ii13034`

ii12389 ii11915

SNA Messages ii13238 ii12491 ii12382
ii12383

ii11916

SNA Network Implementation Guide ii13234 ii12487 ii12381 ii11911

SNA Operation ii13237 ii12489 ii12384 ii11914

SNA Migration ii13233 ii12486 ii12386 ii11910

SNA Programming ii13241 ii13033 ii12385 ii11920

Quick Reference ii13246 ii12500 ii12364 ii11913

SNA Resource Definition Reference ii13235 ii12488 ii12380
ii12567

ii11912
ii12568

SNA Resource Definition Samples

SNA Data Areas ii13239 ii12492 ii12387 ii11617

Other information APARs
Table 55 on page 401 lists information APARs not related to documents.

400 z/OS V1R4.0 CS: IP Programmer’s Reference

Table 55. Non-document information APARs

Content Number

OMPROUTE ii12026

iQDIO ii11220

index of recomended maintenace for VTAM ii11220

CSM for VTAM ii12657

CSM for TCP/IP ii12658

AHHC, MPC, and CTC ii01501

DLUR/DLUS for z/OS V1R2 ii12986

Enterprise Extender ii12223

Generic resources ii10986

HPR ii10953

MNPS ii10370

Performance ii11710
ii11711
ii11712

Appendix F. Information APARs 401

402 z/OS V1R4.0 CS: IP Programmer’s Reference

Appendix G. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1989, 2002 403

404 z/OS V1R4.0 CS: IP Programmer’s Reference

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1989, 2002 405

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

406 z/OS V1R4.0 CS: IP Programmer’s Reference

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Notices 407

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
eServer
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

408 z/OS V1R4.0 CS: IP Programmer’s Reference

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
z/OS.e
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/sites/corporate/tradmarx.htm .

Other company, product, and service names may be trademarks or service marks
of others.

Notices 409

http://www.intel.com/sites/corporate/tradmarx.htm

410 z/OS V1R4.0 CS: IP Programmer’s Reference

Index

Special Characters
<rapi.h> header 143

adspec definitions 146
filter spec definitions 147
flowspec definitions 145
function interface definitions 148
general definitions 143
policy definitions 148
reservation style definitions 148
tspec definitions 144

A
accessibility features 403
addr parameter on RPC call

on clnttcp_create() 202
on clntudp_create() 204
on get_myaddress() 206
on pmap_getmaps() 208
on pmap_getport() 209
on pmap_rmtcall() 210
on xdrmem_create() 274

adspec definitions 146
adspec pieces 156
adspecs 138
AF_INET6 331
agent distributed protocol interface (DPI) 3, 35
ap parameter on RPC call, on xdr_opaque_auth() 254
application resources, X Windows 379, 388
applications, functions and protocols

Network Computing System (NCS) 293
remote procedure calls (RPC) 167
SNMP DPI 3, 35
X Window system interface 159, 333

ar parameter on RPC call, on
xdr_accepted_reply() 235

areas, clearing and copying, X Windows 352
areas, filling, X Windows 353
arrp parameter on RPC call, on xdr_array() 236
associate table functions, X Windows 366
asynchronous event handling, RAPI 138
athena widget set headers 338
Athena Widget Support 380
aup_gids parameter on RPC call, on

authunix_create() 182
aupp parameter on RPC call, on

xdr_authunix_parms() 237
auth parameter on RPC call, on auth_destroy() 180
auth_destroy(), RPC call 180
authnone_create()(RPC) 181
authorization routines, X Windows 369
authunix_create_default() 183
authunix_create() (RPC) 182

B
BANK sample program data sets, NCS 315
basep parameter on RPC call, on xdr_vector() 271
BINOP sample program

Data sets, NCS 305
bitmaps, manipulating 361
bp parameter on RPC call, on xdr_bool() 238
buffers, cut and paste, X Windows 360
building X client modules 346

C
c89 utility options 388
callrpc() 184
CC CLIST, processed by RPCGEN 172
changing window attributes 349
Character Set Selection 94
character string sizes, X Windows 354
chdr parameter on RPC call, on xdr_callhdr() 240
choices parameter on RPC call, on xdr_union() 269
Client

cleanup 167
free resources 167
initialize 167
port numbers 170
process caLL 167
remote procedure call 167

clnt parameter on RPC call
on clnt_call() 188
on clnt_control() 189
on clnt_destroy() 192
on clnt_freeres() 193
on clnt_geterr() 194
on clnt_perror() 197
on clnt_sperror() 200

clnt_broadcast() 186
clnt_call() 188
clnt_control() 189
clnt_create() 191
clnt_destroy() 192
clnt_freeres() 193
clnt_geterr() 194
clnt_pcreateerror() 195
clnt_perrno() 196
clnt_perror() 197
clnt_spcreateerror() 198
clnt_sperrno() 199
clnt_sperror() 200
clntraw_create() 201
clnttcp_create() 202
clntudp_create() 204
cmsg parameter on RPC call, on xdr_callmsg() 241
cnt parameter on RPC call, on xdr_opaque() 253
color cells, manipulating, X Windows 351
colormaps, manipulating, X Windows 350
Communications Server for z/OS, online

information xviii

© Copyright IBM Corp. 1989, 2002 411

compiler nidl 299
compiling and linking

C sockets 6
Kerberos 6
NCS 298, 302
RPC 174
SNMP 5, 38
UNIX System Services 388
X Windows 339, 386

connecting to an agent through UNIX 76
controlled-load services formats 154
cp parameter on RPC call

on xdr_char() 242
on xdr_opaque() 253

creating and destroying windows 348
cursors, manipulating, X Windows 354

D
data structures

header files for RPCs 174
header files for X Window system 296, 337
MANIFEST.H, to remap names 173
pascal include data set 296

dfault parameter on RPC call, on xdr_union() 269
Differentiated Services Policies 327
disability, physical 403
dispatch(), on svc_register() 221
display functions, X Windows 362
DNS, online information xviii
dp parameter on RPC call, on xdr_double.parms() 244
DPI requests, processing 4
DPI_CLOSE_reason_codes 95
DPI_PACKET_LEN() 54
DPI_RC_values 98
DPI_UNREGISTER_reason_codes 96
DPI, packet types 95
DPI, value types 96
DPIawait_packet_from_agent() 72
DPIconnect_to_agent_TCP() 74
DPIconnect_to_agent_UNIXstream() 76
DPIdebug() 53
DPIdisconnect_from_agent() 78
DPIget_fd_for_handle() 79
DPIsend_packet_to_agent() 80
dscmp parameter on RPC call, on xdr_union() 269

E
eachresult parameter on RPC call, on

clnt_broadcast() 186
elemsize parameter on RPC call, on xdr_vector() 271
elproc parameter on RPC call, on xdr_array() 236
elsize parameter on RPC call, on xdr_array() 236
enum clnt_stat structure 173
ep parameter on RPC call, on xdr_enum.parms() 245,

271
error code, DPI RESPONSE error codes 95
error handling, default, X Windows 357
errp parameter on RPC call, on clnt_geterr() 194
events handling, X Windows 357

extension routines, X Windows 364

F
fDPIparse() 55
fDPIparse(), SNMP 7
fDPIset() 56
file parameter on RPC call, on xdrstdio_create() 279
Files, OSF/Motif, location 165
filter spec definitions 147
filter specs 138
flowspecs 137
fonts, loading and freeing, X Windows 353
formats for controlled-load services 154
fp parameter on RPC call, on xdr_float() 247
function

DPI_PACKET_LEN() 54
DPIawait_packet_from_agent() 72
DPIconnect_to_agent_TCP() 74
DPIdebug() 53
DPIdisconnect_from_agent() 78
DPIget_fd_for_handle() 79
DPIsend_packet_to_agent() 80
fDPIparse() 55
fDPIset() 56
lookup_host() 82
mkDPIAreYouThere() 57
mkDPIclose() 58
mkDPIopen() 59
mkDPIregister() 61
mkDPIresponse() 63
mkDPIset() 65
mkDPItrap() 67
mkDPIunregister() 69
pDPIpacket() 70

G
general definitions, RAPI 143
GET request processing 4
get_myaddress() 206
GET-NEXT request processing 4
getreq() (RPC) 219
getrpcport() 207
gid parameter on RPC call, on authunix_create() 182
graphics contexts, manipulating, X Windows 351

H
handle parameter on RPC call, on xdrrec_create() 275
header files

NCS 296
NCS C 296
remote procedure calls 174
SNMP DPI 5
X Window system

Athena Widget Set 338
OSF/Motif 339
X Window system and Xt Intrinsics 338

header files, RAPI 143

412 z/OS V1R4.0 CS: IP Programmer’s Reference

high_vers parameter on RPC call, on
svcerr_progvers() 229

host parameter on RPC call
on authunix_create() 182
on callrpc() 184
on clnt_create() 191
on getrpcport() 207

hosts and access control, X Windows 356

I
IBM Software Support Center, contacting xx
identifying the target display, X Windows 336, 386
images, manipulating, X Windows 361
images, transferring 354
in parameter on RPC call

on callrpc() 184
on clnt_broadcast() 186
on clnt_call() 188
on pmap_rmtcall() 210
on svc_freeargs() 216
on svc_getargs() 217

include, snmp_dpi.h 99
info parameter on RPC call, on clnt_control() 189
information APARs for IP-related documents 399
information APARs for non- document information 400
information APARs for SNA-related documents 400
inproc parameter on RPC call

on callrpc() 184
on clnt_broadcast() 186
on clnt_call() 188
on pmap_rmtcall() 210
on registerrpc() 214
on svc_freeargs() 216
on svc_getargs() 217

integrated services adspec 157
integrated services data structures and macros 150

adspec pieces 156
formats for controlled-load services 154
general definitions 150
generic tspec format 152
integrated services adspec 157
integrated services flowspec 156
integrated services tspec 157

integrated services flowspec 156
integrated services tspec 157
interfaces

RPC interface 167
X Window system interface 159, 333

Internet, finding z/OS information online xviii
intrinsics routines, X Windows 371
ip parameter on RPC call, on xdr_int() 251

K
keyboard 403
keyboard events, X Windows 359
Keyboard settings, manipulating, X Windows 356

L
len parameter on RPC call

on authunix_create() 182
on xdr_inline() 250

libraries
SNMP 6
X Window system 333

license information, online xviii
license, patent, and copyright information 405
limits 98
lines, drawing, X Windows 352
LookAt

accessing from a PalmPilot xix
as a TSO command xix
defined xix
on the Internet xix

lookup_host() 82
low_vers parameter on RPC call, on

svcerr_progvers() 229
lp parameter on RPC call, on xdr_long() 252

M
macro, DPI_PACKET_LEN() 54
management information base (MIB) 3, 4, 35
MANIFEST.H data set, long name remapping 173
manipulating window properties 350
manipulating windows 349
maxsize parameter on RPC call

on xdr_array() 236
on xdr_bytes() 239
on xdr_string() 263

MIT extensions to X 365
mkDPIAreYouThere() 57
mkDPIclose() 58
mkDPIopen() 59
mkDPIregister() 7, 61
mkDPIresponse() 8, 63
mkDPIset() 9, 65
mkDPItrap() 10, 67
mkDPIunregister() 69
Motif-Based Widget Support, X Windows 383

N
NCS

compiling, linking, and running sample program 310
IDL data sets 295
MVS limitations 294
NCSDEFS.H, defined 296
portability issues 296
redefines for sample program 305
RPC-RUNTIME library 296
sample programs 304
USERDEFS.H, user defined 297

NCS header data sets 296
NCS portability

CLIST, RUNCCP 301
converting C identifiers, using CPP define 300
NCSDEFS.H, NCS defines 296

Index 413

NCS portability (continued)
NCSDEFS.H, required user define 297
NIDL compiler 298, 299
Running CPP (NCS C Preprocessor) 300

nelem parameter on RPC call, on xdr_vector() 271
Network Computing System Reference Manual 298
Network Driver Interface Specifications 294
NIDL compiler 298
NIDL compiler option 300
NSC, BANK sample program data sets 315
NSC, BINOP sample program data sets 305
NSC, NCSSMP sample program data sets 310
NSC, Running UUID@GEN identifier generator 304

O
objp parameter on RPC call, on xdr_free() 248
obtaining properties and atoms, X Windows 350
obtaining window information, X Windows 349
op parameter on RPC call

on xdrmem_create() 274
on xdrstdio_create() 279

opening and closing a display, X Windows 348
OSF/Motif header files 339
out parameter on RPC call

on callrpc() 184
on clnt_broadcast() 186
on clnt_call() 188
on clnt_freeres() 193
on pmap_rmtcall() 210
on svc_sendreply() 223

outproc parameter on RPC call
on callrpc() 184, 186
on clnt_broadcast() 186
on clnt_call() 188
on clnt_freeres() 193
on pmap_rmtcall() 210
on registerrpc() 214
on svc_sendreply() 223

P
packet DPI, mkDPIpacket() 11
pDPIpacket() 70
pixmaps, creating and freeing, X Windows 351
pmap_getmaps() 208
pmap_getport() 209
pmap_rmtcall() 210
pmap_set() 212
pmap_unset() 213
port parameter on RPC call, on pmap_set() 212
portability issues, NCS 296
portmapper 169
portmapper, well-known port 170
portp parameter on RPC call, on auth_destroy() 210
pos parameter on RPC call, on xdr_setpos() 261
pp parameter on RPC call

on xdr_pointer() 257
on xdr_reference() 258

proc parameter on RPC call
on xdr_free() 248

proc parameter on RPC call (continued)
on xdr_pointer() 257
on xdr_reference() 258

procedure calls, remote
portmapper, contacting 170
target assistance 170

processing a set request 4
processing DPI requests 4
processing GET requests 4
procname parameter on RPC call, on registerrpc() 214
procnum parameter on RPC call

on callrpc() 184
on clnt_broadcast() 186
on clnt_call() 188
on pmap_rmtcall() 210
on registerrpc() 214

prognum parameter on RPC call
on callrpc() 184
on clnt_broadcast() 186
on clnt_create() 191
on clntraw_create() 201
on clnttcp_create() 202
on clntudp_create() 204
on getrpcport() 207
on pmap_getport() 209
on pmap_rmtcall() 210
on pmap_set() 212
on pmap_unset() 213
on registerrpc() 214
on svc_register() 221
on svc_unregister() 224

protocol parameter on RPC call
on clnt_create() 191
on getrpcport() 207
on pmap_getport() 209
on pmap_set() 212

Q
query_DPI_port() 12

R
RAPI (Resource Reservation Setup Protocol API) 125
RAPI error codes 141
RAPI error handling 141
RAPI function interface definitions 148
RAPI objects 137

adspecs 138
filter specs 138
flowspecs 137
sender templates 138
sender tspecs 138

RAPI policy definitions 148
RAPI reservation style definitions 148
rapi_dispatch() 140
rapi_event_rtn_t 127
rapi_fmt_adspec() 134
rapi_fmt_filtspec() 135
rapi_fmt_flowspec() 135
rapi_fmt_tspec() 136

414 z/OS V1R4.0 CS: IP Programmer’s Reference

rapi_getfd() 140
rapi_release() 130
rapi_reserve() 130
rapi_sender() 131
rapi_session() 133
rapi_version() 134
rc values, DPI_RC_values 98
rdfds parameter on RPC call, on svc_getreq() 219
readit() parameter, on xdrrec_create() 275
reason code, DPI CLOSE reason codes 95
reason code, DPI UNREGISTER reason codes 96
recv_buf_size parameter on RPC call

on svctcp_create() 233
on svcudp_create() 234

recvsize parameter on RPC call, on
xdrrec_create() 275

recvsz parameter on RPC call, on clnttcp_create() 202
reference sections

well-known port assignments 323
regions, X Windows 360
REGISTER request processing 5
registerrpc() 214
regs parameter on RPC call, on xdr_pmap() 255
remote Procedure and external data representation calls

auth_destroy() 180
authnone_create() 181
authunix_create_default() 183
authunix_create() 182
callrpc() 184
clnt_broadcast() 186
clnt_call() 188
clnt_control() 189
clnt_create() 191
clnt_destroy() 192
clnt_freeres() 193
clnt_geterr() 194
clnt_pcreateerror() 195
clnt_perrno() 196
clnt_perror() 197
clnt_spcreateerror() 198
clnt_sperrno() 199
clnt_sperror() 200
clntraw_create() 201
clnttcp_create() 202
clntudp_create() 204
get_myaddress() 206
getrpcport() 207
pmap_getmaps() 208
pmap_getport() 209
pmap_rmtcall() 210
pmap_set() 212
pmap_unset() 213
registerrpc() 214
rpc_createerr 176
svc_destroy() 215
svc_fds() 177
svc_freeargs() 216
svc_getargs() 217
svc_getcaller() 218
svc_getreq() 219
svc_register() 221

remote Procedure and external data representation
calls (continued)

svc_run() 222
svc_sendreply() 223
svc_unregister() 224
svcerr_auth() 225
svcerr_decode() 226
svcerr_noproc() 227
svcerr_noprog() 228
svcerr_progvers() 229
svcerr_systemerr() 230
svcerr_weakauth() 231
svcraw_create() 232
svctcp_create() 233
svcudp_create() 234
xdr_accepted_reply() 235
xdr_array() 236
xdr_authunix_parms() 237
xdr_bool() 238
xdr_bytes() 239
xdr_callhdr() 240
xdr_callmsg() 241
xdr_char() 242
xdr_destroy() 243
xdr_double() 244
xdr_enum() 245
xdr_float() 247
xdr_free() 248
xdr_getpos() 249
xdr_inline() 250
xdr_int() 251
xdr_long() 252
xdr_opaque_auth() 254
xdr_opaque() 253
xdr_pmap() 255
xdr_pmaplist() 256
xdr_pointer() 257
xdr_reference() 258
xdr_rejected_reply() 259
xdr_replymsg() 260
xdr_setpos() 261
xdr_short() 262
xdr_string() 263
xdr_u_char() 265
xdr_u_int() 266
xdr_u_long() 267
xdr_u_short() 268
xdr_union() 269
xdr_vector() 271
xdr_void() 272
xdr_wrapstring() 273
xdrmem_create() 274
xdrrec_create() 275
xdrrec_endofrecord() 276
xdrrec_eof() 277
xdrrec_skiprecord() 278
xdrstdio_create() 279
xprt_register() 280
xprt_unregister() 281

remote procedure call (RPC)
header files 174

Index 415

remote procedure call (RPC) (continued)
portmapper 169
portmapper, contacting 170
RPCGEN command 171
RPCGEN sample programs 287
sample programs

GENESEND, client 282
GENESERV, server 283
RAWEX, raw data stream 285

remote procedure call (RPC) global variables
global variables 175
rpc_createerr 176
svc_fds 177

remote procedure call (RPC) protocol
compilng and linking 174
enum clnt_stat structure 173
enumerations 174
MANIFEST.H, remapping file names with 173
porting 173
system return messages, accessing 174
system return messages, printing 174

request parameter on RPC call, on clnt_control() 189
resource manager, X Windows 361
Resource Reservation Protocol (RSVP) 125
Resource Reservation Setup Protocol API (RAPI) 125
return code, DPI CLOSE reason codes 95
return code, DPI UNREGISTER reason codes 96
RFC (request for comment)

list of 391
RFC (request for comments)

accessing online xviii
rmsg parameter on RPC call, on xdr_replymsg() 260
rp parameter on RPC call, on xdr_pmaplist() 256
RPC Interface 167
RPC Porting 173
rpc_createerr 176
RPCGEN command parameters 171
rr parameter on RPC call, on xdr_rejected_reply() 259
RSVP agent 125
RSVP error codes 142
run-time options, nidl 300

S
s parameter on RPC call

on clnt_pcreateerror() 195
on clnt_perrno() 197
on clnt_spcreateerror() 198
on clnt_sperror() 200

sample NCS programs
compiling, linking, and running 310
redefines for this sample program 305

sample RPC programs 282, 304
screen saver, controlling, X Windows 356
Selection, Character Set 94
send_buf_size parameter on RPC call

on svctcp_create() 233
on svcudp_create() 234

sender templates 138
sender tspecs 138

sendmsg() considerations
AF_INET6 331
IBM C/C++ applications 331
UNIX System Services Assembler Callable Services

Environment 331
sendnow parameter on RPC call, on

xdrrec_endofrecord() 276
sendsize parameter on RPC call, on

xdrrec_create() 275
sendsz parameter on RPC call, on

clnttcp_create() 202
server

contacting server programs 170
server, remote procedure calls

initialize 169
process 169
receive request 169
reply 169
transaction and cleanup 169

SET, SNMP DPI request 4
setting window selections 350
shortcut keys 403
simple network management protocol (SNMP) 3, 35
size parameter on RPC call

on xdr_pointer() 257
on xdr_reference() 258
on xdrmem_create() 274

sizep parameter on RPC call
on xdr_array() 236
on xdr_bytes() 239

SNMP
client program 13, 123
compiling and linking 5, 38
fDPIparse() 7
GET-NEXT 4
header files 5
library routines 6
mkDPIpacket() 11
mkDPIregister() 7
mkDPIresponse() 8
mkDPIset() 9
mkDPItrap() 10
query_DPI_port() 12
REGISTER request, processing 5
TRAP request 5

SNMP agents 3, 35
SNMP subagents 3, 35
SNMP_CLOSE_reason_codes 95
snmp_dpi_close_packet 84
snmp_dpi_get_packet 85
snmp_dpi_hdr 86
snmp_dpi_next_packet 88
SNMP_DPI_packet_types 95
snmp_dpi_resp_packet 89
snmp_dpi_set_packet 90
snmp_dpi_u64 93
snmp_dpi_ureg_packet 92
snmp_dpi.h 99
SNMP_ERROR_codes 95
SNMP_TYPE_value_types 96
SNMP_UNREGISTER_reason_codes 96

416 z/OS V1R4.0 CS: IP Programmer’s Reference

sock parameter on RPC call, on svctcp_create() 233
sockets

compiler restrictions 384
UNIX System Services 384
using 384

sockp parameter on RPC call
on clnttcp_create() 202
on clntudp_create() 204
on svcudp_create() 234

software requirements
UNIX System Services 385
X Windows 334

sp parameter on RPC call
on xdr_bytes() 239
on xdr_short() 262
on xdr_string() 263
on xdr_wrapstring() 273

stat parameter on RPC call
on clnt_perrno() 196
on clnt_sperrno() 199

structure
snmp_dpi_close_packet 84
snmp_dpi_get_packet 85
snmp_dpi_hdr 86
snmp_dpi_next_packet 88
snmp_dpi_resp_packet 89
snmp_dpi_set_packet 90
snmp_dpi_u64 93
snmp_dpi_ureg_packet 92

subroutines (X Window system) 348
svc_destroy() 215
svc_fds() 177
svc_freeargs() 216
svc_getargs() 217
svc_getcaller() 218
svc_getreq() 219
svc_register() 221
svc_run() 222
svc_sendreply() 223
svc_unregister() 224
svcerr_auth() 225
svcerr_decode() 226
svcerr_noproc() 227
svcerr_noprog() 228
svcerr_progvers() 229
svcerr_systemerr() 230
svcerr_weakauth() 231
svcraw_create() 232
svctcp_create() 233
svcudp_create() 234
synchronization, enable and disable, X Windows 357
system toolkit, X Windows 370

T
tasks

Compile
steps for the BANK program 317
steps for the NCSSMP program 312
steps for the sample BINOP program 307

tasks (continued)
Link

steps for the BANK program 318
steps for the NCSSMP program 313
steps for the sample BINOP program 308

Run
steps for the BANK program 320
steps for the NCSSMP program 314
steps for the sample BINOP program 310

Setup
steps for the BANK program 316
steps for the NCSSMP program 311
steps for the sample BINOP program 306

TCP/IP
online information xviii
protocol specifications 391

tcpip.v3r1.data sets
SEZAOLDX 333
SEZARNT1 333
SEZAX11L 333
SEZAXAWL 333
SEZAXMLB 333
SEZAXTLB 333

text, drawing, X Windows 354
tout parameter on RPC call

on clnt_call() 188
on pmap_rmtcall() 210

trademark information 408
TRAP request processing 5
tspec definitions 144
tspec format 152
types, DPI packet types 95

U
ucp parameter on RPC call, on xdr_u_char() 265
uid parameter on RPC call, on authunix_create() 182
ulp parameter on RPC call, on xdr_u_long() 267
UNIX System Services

compiling and linking 388
sockets 384
software requirements 385
using 384
what is provided 385

UNIXstream function 76
unp parameter on RPC call, on xdr_union() 269
up parameter on RPC call, on xdr_u_int() 266
user interface

ISPF 403
TSO/E 403

using
OSF/Motif 165
X Window System 159

usp parameter on RPC call, on xdr_u_short() 268
utility routines, X Windows 366
UUID@GEN identifier generator 304

V
value ranges 98
value types, SNMP_TYPE_value_types 96

Index 417

versnum parameter on RPC call
on callrpc() 184
on clnt_broadcast() 186
on clnt_create() 191
on clntraw_create() 201
on clnttcp_create() 202
on clntudp_create() 204
on getrpcport() 207
on pmap_getport() 209
on pmap_rmtcall() 210
on pmap_set() 212
on pmap_unset() 213
on registerrpc() 214
on svc_register() 221
on svc_unregister() 224

visual types 360
VTAM, online information xviii

W
wait parameter on RPC call, on clntudp_create() 204
well-known port assignments 323
what is provided, UNIX System Services 385
what is provided, X Windows 333
why parameter on RPC call, on svcerr_auth() 225
widgets, defining 370
window manager functions, X Windows 355
window manager, communicating with, X Window

system 358
writeit() parameter on RPC, on xdrrec_create() 275

X
X Window system

application resource file 336, 385
areas, clearing and copying 352
areas, filling 353
associate table functions 366
bitmaps, manipulating 361
buffers, cut and paste 360
changing window attributes 349
character string sizes 354
color cells, manipulating 351
colormaps, manipulating 350
creating an application 337
creating and destroying windows 348
cursors, manipulating, X Windows 354
defining widgets 370
display functions 362
error handling, default 357
events handling 357
extension routines 364
fonts, loading and freeing 353
graphics contexts 351
header files 337, 338
hosts and access control 356
identifying target display 336, 386
images, manipulating 361
images, transferring 354
keyboard events, manipulating 359
keyboard settings, handling 356

X Window system (continued)
lines, drawing 352
manipulating window properties 350
manipulating windows 349
obtaining properties and atoms 350
obtaining window information 349
opening and closing a display 348
pixmaps, creating and freeing 351
porting applications 370
regions, manipulating 360
resource manager 361
sample programs, X Windows 343
screen saver, controlling 356
setting window selections 350
synchronization, enable and disable 357
text, drawing 354
visual types 360
window manager functions 355
window managers, communicating 358
X client applications 344
X client modules, building 346
X defaults 336
X Window system Interface 159, 333, 334
X Window system Toolkit 370
Xt Intrinsics 379, 388

X Window system, application layer
Application Resources 379, 388
Athena Widget Support 380
Authorization Routines 369
Miscellaneous Utility Routines 366
MIT Extensions 365
Motif-Based Widget Support 383
Routines 348
Xt Intinsics Routines 371

X Window system, what is provided 333
xdr_accepted_reply() 235
xdr_array() 236
xdr_authunix_parms() 237
xdr_bool() 238
xdr_bytes() 239
xdr_callhdr() 240
xdr_callmsg() 241
xdr_char() 242
xdr_destroy() 243
xdr_double() 244
xdr_elem parameter on RPC call, on xdr_vector() 271
xdr_enum() 245
xdr_float() 247
xdr_free() 248
xdr_getpos() 249
xdr_inline() 250
xdr_int() 251
xdr_long() 252
xdr_opaque_auth() 254
xdr_opaque() 253
xdr_pmap() 255
xdr_pmaplist() 256
xdr_pointer() 257
xdr_reference() 258
xdr_rejected_reply() 259
xdr_replymsg() 260

418 z/OS V1R4.0 CS: IP Programmer’s Reference

xdr_setpos() 261
xdr_short() 262
xdr_string() 263
xdr_u_char() 265
xdr_u_int() 266
xdr_u_long() 267
xdr_u_short() 268
xdr_union() 269
xdr_vector() 271
xdr_void() 272
xdr_wrapstring() 273
xdrmem_create() 274
xdrrec_create() 275
xdrrec_endofrecord() 276
xdrrec_eof() 277
xdrrec_skiprecord() 278
xdrs parameter on RPC call

on xdr_accepted_reply() 235
on xdr_array() 236
on xdr_authunix_parms() 237
on xdr_bool() 238
on xdr_bytes() 239
on xdr_callhdr() 240
on xdr_callmsg() 241
on xdr_char() 242
on xdr_destroy() 243
on xdr_double() 244
on xdr_enum() 245
on xdr_float() 247
on xdr_getpos() 249
on xdr_inline() 250
on xdr_int() 251
on xdr_long() 252
on xdr_opaque_auth() 254
on xdr_opaque() 253
on xdr_pmap() 255
on xdr_pmaplist() 256
on xdr_pointer() 257
on xdr_reference() 258
on xdr_rejected_reply() 259
on xdr_replymsg() 260
on xdr_setpos() 261
on xdr_short() 262
on xdr_string() 263
on xdr_u_char() 265
on xdr_u_int() 266
on xdr_u_long() 267
on xdr_u_short() 268
on xdr_union() 269
on xdr_vector() 271
on xdr_wrapstring() 273
on xdrmem_create() 274
on xdrrecc_create() 275
on xdrrecc_endofrecord() 276
on xdrrecc_eof() 277
on xdrrecc_skiprecord() 278
on xdrstdio_create() 279

xdrstdio_create() 279
xprt parameter on RPC call

on svc_destroy() 215
on svc_freeargs() 216

xprt parameter on RPC call (continued)
on svc_getargs() 217
on svc_getcaller() 218
on svc_register() 221
on svc_sendreply() 223
on svcerr_auth() 225
on svcerr_decode() 226
on svcerr_noproc() 227
on svcerr_noprog() 228
on svcerr_progvers() 229
on svcerr_systemerr() 230
on svcerr_weakauth() 231
on xprt_register() 280
on xprt_unregister() 281

xprt_register() 280
xprt_unregister() 281

Z
z/OS, documentation library listing xx
z/OS, listing of documentation available 399

Index 419

420 z/OS V1R4.0 CS: IP Programmer’s Reference

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. However, the comments you
send should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by mail, use the RCF at the back of this
document.

v If you prefer to send comments by FAX, use this number: 1-800-254-0206

v If you prefer to send comments electronically, use this network ID:
usib2hpd@vnet.ibm.com

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1989, 2002 421

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|

|

422 z/OS V1R4.0 CS: IP Programmer’s Reference

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IP Programmer’s Reference
Version 1 Release 4

Publication No. SC31-8787-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8787-02

SC31-8787-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01 and 5655–G52

Printed in U.S.A.

SC31-8787-02

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

4.
0

C
S:

IP
Pr

og
ra

m
m

er
’s

R
ef

er
en

ce
Ve

rs
io

n
1

R
el

ea
se

4

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Typographic conventions used in this document
	Where to find more information
	Where to find related information on the Internet
	DNS web sites

	Licensed documents
	Using LookAt to look up message explanations
	How to contact IBM service
	z/OS Communications Server information
	Softcopy information
	z/OS Communications Server library
	Redbooks
	Related information
	Determining if a publication is current

	Summary of changes
	Chapter 1. General programming information
	Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0

	Chapter 2. SNMP agent Distributed Protocol Interface version 1.1
	SNMP agents and subagents
	Processing DPI requests
	Processing a GET request
	Processing a SET request
	Processing a GET-NEXT request
	Processing a REGISTER request
	Processing a TRAP request
	SNMP agent DPI header files

	Compiling and linking
	Sample compile cataloged procedure additions
	Sample link-edit cataloged procedure additions

	SNMP DPI library routines
	mkDPIlist()
	fDPIparse()
	mkDPIregister()
	mkDPIresponse()
	mkDPIset()
	mkDPItrap()
	mkDPItrape()
	pDPIpacket()
	query_DPI_port()

	Sample SNMP DPI client program for C sockets for version 1.1
	Using the DPISAMPL program
	DPISAMPN NCCFLST for the SNMP manager
	Compiling and linking the DPISAMPL.C source code
	dpiSample table MIB descriptions
	The DPISAMPL.C source code

	Chapter 3. SNMP agent Distributed Protocol Interface version 2.0
	SNMP agents and subagents
	DPI agent requests
	Related information

	SNMP DPI version 2.0 library
	SNMP DPI version 2.0 API

	Compiling and linking
	From a UNIX System Services environment
	From an MVS environment

	DPI version 1.x base code considerations
	SNMP DPI API version 1.1 considerations
	Migrating your SNMP DPI subagent to version 2.0
	Required actions
	Recommended actions
	Name changes

	Subagent programming concepts
	Related information

	Specifying the SNMP DPI API
	Connect processing
	Related information

	OPEN request
	Related information

	REGISTER request
	Related information

	GET processing
	Related information

	SET processing
	Related information

	GETNEXT processing
	Related information

	GETBULK processing request
	Related information

	TRAP request
	Related information

	ARE_YOU_THERE request
	UNREGISTER request
	Related information

	CLOSE request
	Related information

	Multithreading programming considerations
	Functions, data structures, and constants
	Basic DPI API functions
	The DPIdebug() function
	The DPI_PACKET_LEN() macro
	The fDPIparse() function
	The fDPIset() function
	The mkDPIAreYouThere() function
	The mkDPIclose() function
	The mkDPIopen() function
	The mkDPIregister() function
	The mkDPIresponse() function
	The mkDPIset() function
	The mkDPItrap() function
	The mkDPIunregister() function
	The pDPIpacket() function

	Transport-related DPI API functions
	The DPIawait_packet_from_agent() function
	The DPIconnect_to_agent_TCP() function
	The DPIconnect_to_agent_UNIXstream() function
	The DPIdisconnect_from_agent() function
	The DPIget_fd_for_handle() function
	The DPIsend_packet_to_agent() function
	The lookup_host() function

	DPI structures
	The snmp_dpi_close_packet structure
	The snmp_dpi_get_packet structure
	The snmp_dpi_hdr structure
	The snmp_dpi_next_packet structure
	The snmp_dpi_resp_packet structure
	The snmp_dpi_set_packet structure
	The snmp_dpi_ureg_packet structure
	The snmp_dpi_u64 structure

	Character set selection
	Related information

	Constants, values, return codes, and include file
	DPI CLOSE reason codes
	Related information

	DPI packet types
	Related information

	DPI RESPONSE error codes
	Related information

	DPI UNREGISTER reason codes
	Related information

	DPI SNMP value types
	Related information

	Value representation
	Related information

	Value ranges and limits
	Return codes from DPI transport-related functions
	Related information

	The snmp_dpi.h include file
	Parameters
	Description
	Related information

	A DPI subagent example
	Overview of subagent processing
	Connecting to the agent
	Registering a subtree with the agent
	Processing requests from the agent
	Processing a GET request
	Processing a GETNEXT request
	Processing a SET/COMMIT/UNDO request
	Processing an UNREGISTER request
	Processing a CLOSE request
	Generating a TRAP

	Chapter 4. Running the sample SNMP DPI client program for version 2.0
	Using the sample program
	Compiling and linking the dpi_mvs_sample.c source code
	DPISimple-MIB descriptions

	Chapter 5. Resource Reservation Setup Protocol API (RAPI)
	Introduction
	API outline
	Compiling and linking RAPI applications
	Running RAPI applications
	Event upcall
	rapi_event_rtn_t - Event upcall
	Description
	Parameters
	Result

	Client library services
	rapi_release - Remove a session
	Description
	Parameters
	Result

	rapi_reserve - Make, modify, or delete a reservation
	Description
	Parameters
	Result

	rapi_sender - Specify sender parameters
	Description
	Parameters
	Result

	rapi_session - Create a session
	Description
	Parameters
	Result
	Extended description

	rapi_version - RAPI version
	Description
	Result

	RAPI formatting routines
	rapi_fmt_adspec - Format an adspec
	Description
	Parameters
	Result

	rapi_fmt_filtspec - Format a filtspec
	Description
	Parameters
	Result

	rapi_fmt_flowspec - Format a flowspec
	Description
	Parameters
	Result

	rapi_fmt_tspec - Format a tspec
	Description
	Parameters
	Result

	RAPI objects
	Flowspecs
	RAPI_FLOWSTYPE_Simplified
	RAPI_FLOWSTYPE_Intserv
	Upcalls

	Sender tspecs
	RAPI_TSPECTYPE_Simplified
	RAPI_TSPECTYPE_Intserv
	Upcalls

	Adspecs
	RAPI_ADSTYPE_Simplified
	RAPI_ADSTYPE_Intserv
	Upcalls

	Filter specs and sender templates

	Asynchronous event handling
	rapi_dispatch - Dispatch API event
	Description
	Parameters
	Result

	rapi_getfd - Get file descriptor
	Description
	Parameters
	Result

	Error handling
	Introduction
	RAPI error codes
	RSVP error codes

	Header files
	Integer and floating point types
	The <rapi.h> header
	General definitions
	Tspec definitions
	Flowspec definitions
	Adspec definitions
	Filter spec definitions
	Policy definitions
	Reservation style definitions
	Function interface definitions

	Integrated services data structures and macros
	General definitions
	Generic tspec format
	Formats for controlled-load service
	Formats for guaranteed service
	Basic adspec pieces
	Integrated services flowspec
	Integrated services tspec
	Integrated services adspec

	Chapter 6. X Window System interface in the z/OS CS environment
	X Window System and OSF/Motif
	DLL support for the X Window System
	How the X Window System interface works in the MVS environment
	z/OS UNIX application resource file
	Identifying the target display in z/OS UNIX

	Programming considerations
	Porting motif applications to z/OS UNIX MVS
	Compiling and linking OSF/Motif and X Window System applications

	Running an X Window System or OSF/Motif DLL enabled application
	X Window System environment variables
	EBCDIC/ASCII translation in the X Window System
	Locale independent translation
	Locale dependent translation
	XTextProperty with COMPOUND_TEXT encoding

	Standard clients supplied with MVS z/OS UNIX X Window System support
	Demonstration programs supplied with MVS z/OS UNIX X Window System support
	Where files are located

	Chapter 7. Remote procedure calls in the z/OS CS environment
	The RPC interface
	Portmapper
	Contacting portmapper
	Target assistance
	RPCGEN Command
	enum clnt_.stat structure

	Porting
	Remapping file names with MANIFEST.H
	Accessing system return messages
	Printing system return messages
	Enumerations
	Header files for remote procedure calls

	Compiling and linking RPC applications
	Sample compile cataloged procedure additions
	Nonreentrant modules
	Reentrant modules

	RPC global variables
	rpc_createerr
	svc_fds
	svc_fdset
	Remote procedure and external data representation calls
	auth_destroy()
	authnone_create()
	authunix_create()
	authunix_create_default()
	callrpc()
	clnt_broadcast()
	clnt_call()
	clnt_control()
	clnt_create()
	clnt_destroy()
	clnt_freeres()
	clnt_geterr()
	clnt_pcreateerror()
	clnt_perrno()
	clnt_perror()
	clnt_spcreateerror()
	clnt_sperrno()
	clnt_sperror()
	clntraw_create()
	clnttcp_create()
	clntudp_create()
	get_myaddress()
	getrpcport()
	pmap_getmaps()
	pmap_getport()
	pmap_rmtcall()
	pmap_set()
	pmap_unset()
	registerrpc()
	svc_destroy()
	svc_freeargs()
	svc_getargs()
	svc_getcaller()
	svc_getreq()
	svc_getreqset()
	svc_register()
	svc_run()
	svc_sendreply()
	svc_unregister()
	svcerr_auth()
	svcerr_decode()
	svcerr_noproc()
	svcerr_noprog()
	svcerr_progvers()
	svcerr_systemerr()
	svcerr_weakauth()
	svcraw_create()
	svctcp_create()
	svcudp_create()
	xdr_accepted_reply()
	xdr_array()
	xdr_authunix_parms()
	xdr_bool()
	xdr_bytes()
	xdr_callhdr()
	xdr_callmsg()
	xdr_char()
	xdr_destroy()
	xdr_double()
	xdr_enum()
	xdr_float()
	xdr_free()
	xdr_getpos()
	xdr_inline()
	xdr_int()
	xdr_long()
	xdr_opaque()
	xdr_opaque_auth()
	xdr_pmap()
	xdr_pmaplist()
	xdr_pointer()
	xdr_reference()
	xdr_rejected_reply()
	xdr_replymsg()
	xdr_setpos()
	xdr_short()
	xdr_string()
	xdr_text_char()
	xdr_u_char()
	xdr_u_int()
	xdr_u_long()
	xdr_u_short()
	xdr_union()
	xdr_vector()
	xdr_void()
	xdr_wrapstring()
	xdrmem_create()
	xdrrec_create()
	xdrrec_endofrecord()
	xdrrec_eof()
	xdrrec_skiprecord()
	xdrstdio_create()
	xprt_register()
	xprt_unregister()
	Sample RPC programs
	Running RPC sample programs
	Starting the GENESERV server
	Running GENESEND client
	Running the RAWEX module

	RPC client
	RPC server
	RPC raw data stream

	RPCGEN sample programs
	Generating your own sequential data sets
	Building client and server executable modules
	Running RPCGEN sample programs

	Chapter 8. Remote procedure calls in the z/OS UNIX System Services environment
	Deviations from Sun RPC 4.0
	Source margins
	Functions

	Using z/OS UNIX System Services RPC
	Support for 64-bit integers
	UDP transport protocol CLIENT handles
	Restrictions

	Chapter 9. Network Computing System (NCS)
	NCS and the Network Computing Architecture
	NCS components
	Remote procedure call run-time library
	Location broker
	Network interface definition language compiler

	MVS implementation of NCS
	NCS system IDL data sets
	NCS C header data sets and the Pascal include data set
	NCS RPC run-time library
	Portability issues
	NCS defines NCSDEFS.H
	Required user-defined USERDEFS.H

	Preprocessing, compiling, and linking
	NCS preprocessor programs
	NIDL compiler
	Converting C identifiers using the CPP program

	Compiling and linking NCS programs
	Sample compile cataloged procedure additions
	Sample link-edit cataloged procedure additions

	Running UUID@GEN
	NCS sample programs
	The NCSSMP sample program
	NCS sample redefines

	Compiling, linking, and running the sample BINOP program
	Setup
	Compile
	Link
	Run

	Compiling, linking, and running the NCSSMP program
	Setup
	Compile
	Link
	Run

	Compiling, linking, and running the sample BANK program
	Setup
	Compile
	Link
	Run

	Appendix A. TCP/IP in the sysplex
	Appendix B. Well-known port assignments
	Well-known UDP port assignments

	Appendix C. Programming interfaces for providing classification data to be used in differentiated services policies
	Passing application classification data on SENDMSG
	Additional considerations

	Appendix D. X Window System interface V11R4 and OSF/Motif version 1.1
	What is provided
	Software requirements
	How the X Window System interface works in the MVS environment
	Identifying the target display
	Application resource file
	Creating an application
	X Window System header files
	X Window System and Xt Intrinsics header files
	Athena widget set header files
	OSF/Motif header files

	Compiling and linking
	Nonreentrant modules
	Reentrant modules

	Using sample X Window System programs
	Running a sample program

	Standard X client applications
	Building X client modules

	X Window System routines
	Opening and closing a display
	Creating and destroying windows
	Manipulating windows
	Changing window attributes
	Obtaining window information
	Obtaining properties and atoms
	Manipulating window properties
	Setting window selections
	Manipulating colormaps
	Manipulating color cells
	Creating and freeing pixmaps
	Manipulating graphics contexts
	Clearing and copying areas
	Drawing lines
	Filling areas
	Loading and freeing fonts
	Querying character string sizes
	Drawing text
	Transferring images
	Manipulating cursors
	Handling window manager functions
	Manipulating keyboard settings
	Controlling the screen saver
	Manipulating hosts and access control
	Handling events
	Enabling and disabling synchronization
	Using default error handling
	Communicating with window managers
	Manipulating keyboard event functions
	Manipulating regions
	Using cut and paste buffers
	Querying visual types
	Manipulating images
	Manipulating bit maps
	Using the resource manager
	Manipulating display functions

	Extension routines
	MIT extensions to X
	Associate table functions
	Miscellaneous utility routines
	X authorization routines
	X Window System toolkit
	Xt Intrinsics routines

	Application resources
	Athena widget support
	OSF/Motif-based widget support
	z/OS UNIX System Services support
	What is provided with z/OS UNIX System Services
	z/OS UNIX System Services software requirements
	z/OS UNIX System Services application resource file
	Identifying the target display in z/OS UNIX System Services
	Compiling and linking with z/OS UNIX System Services
	Compiling and linking with z/OS UNIX System Services using c89
	Standard X client applications for z/OS UNIX System Services
	Application resources for z/OS UNIX System Services

	Appendix E. Related protocol specifications (RFCs)
	Appendix F. Information APARs
	Information APARs for IP manuals
	Information APARs for SNA manuals
	Other information APARs

	Appendix G. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	Communicating Your Comments to IBM
	Readers’ Comments — We'd Like to Hear from You

